Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.
Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
Int J Nanomedicine. 2021 Jan 6;16:1-14. doi: 10.2147/IJN.S275808. eCollection 2021.
The present study reports on examination of the effects of encapsulating the tyrosine kinase inhibitors (TKIs) vandetanib and lenvatinib into a biomacromolecular ferritin-based delivery system.
The encapsulation of TKIs was performed via two strategies: i) using an active reversible pH-dependent reassembly of ferritin´s quaternary structure and ii) passive loading of hydrophobic TKIs through the hydrophobic channels at the junctions of ferritin subunits. After encapsulation, ferritins were surface-functionalized with folic acid promoting active-targeting capabilities.
The physico-chemical and nanomechanical analyses revealed that despite the comparable encapsulation efficiencies of both protocols, the active loading affects stability and rigidity of ferritins, plausibly due to their imperfect reassembly. Biological experiments with hormone-responsive breast cancer cells (T47-D and MCF-7) confirmed the cytotoxicity of encapsulated and folate-targeted TKIs to folate-receptor positive cancer cells, but only limited cytotoxic effects to healthy breast epithelium. Importantly, the long-term cytotoxic experiments revealed that compared to the pH-dependent encapsulation, the passively-loaded TKIs exert markedly higher anticancer activity, most likely due to undesired influence of harsh acidic environment used for the pH-dependent encapsulation on the TKIs' structural and functional properties.
Since the passive loading does not require a reassembly step for which acids are needed, the presented investigation serves as a solid basis for future studies focused on encapsulation of small hydrophobic molecules.
本研究报告了将酪氨酸激酶抑制剂(TKIs)凡德他尼和仑伐替尼包封到生物大分子铁蛋白递药系统中的效果检测。
通过两种策略对 TKI 进行包封:i)利用铁蛋白四级结构的活性可逆 pH 依赖性再组装,和 ii)通过铁蛋白亚基连接处的疏水通道进行疏水 TKI 的被动加载。包封后,铁蛋白通过叶酸进行表面功能化,以促进主动靶向能力。
物理化学和纳米力学分析表明,尽管两种方案的包封效率相当,但主动加载会影响铁蛋白的稳定性和刚性,这可能是由于其不完全再组装所致。用激素反应性乳腺癌细胞(T47-D 和 MCF-7)进行的生物学实验证实了包封和叶酸靶向 TKI 对叶酸受体阳性癌细胞的细胞毒性,但对健康乳腺上皮细胞仅具有有限的细胞毒性作用。重要的是,长期细胞毒性实验表明,与 pH 依赖性包封相比,被动加载的 TKI 发挥出明显更高的抗癌活性,这很可能是由于用于 pH 依赖性包封的苛刻酸性环境对 TKI 的结构和功能特性产生了不良影响。
由于被动加载不需要再组装步骤,因此该研究为未来专注于包封小疏水分子的研究提供了坚实的基础。