Suppr超能文献

通过监管科学开展竞争前共识构建,以促进数字健康技术在帕金森病药物研发中的应用。

Precompetitive Consensus Building to Facilitate the Use of Digital Health Technologies to Support Parkinson Disease Drug Development through Regulatory Science.

作者信息

Stephenson Diane, Alexander Robert, Aggarwal Varun, Badawy Reham, Bain Lisa, Bhatnagar Roopal, Bloem Bastiaan R, Boroojerdi Babak, Burton Jackson, Cedarbaum Jesse M, Cosman Josh, Dexter David T, Dockendorf Marissa, Dorsey E Ray, Dowling Ariel V, Evers Luc J W, Fisher Katherine, Frasier Mark, Garcia-Gancedo Luis, Goldsack Jennifer C, Hill Derek, Hitchcock Janice, Hu Michele T, Lawton Michael P, Lee Susan J, Lindemann Michael, Marek Ken, Mehrotra Nitin, Meinders Marjan J, Minchik Michael, Oliva Lauren, Romero Klaus, Roussos George, Rubens Robert, Sadar Sakshi, Scheeren Joseph, Sengoku Eiichi, Simuni Tanya, Stebbins Glenn, Taylor Kirsten I, Yang Beatrice, Zach Neta

机构信息

Critical Path Institute, Tucson, Arizona, USA.

Takeda, Cambridge, Massachusetts, USA.

出版信息

Digit Biomark. 2020 Nov 26;4(Suppl 1):28-49. doi: 10.1159/000512500. eCollection 2020 Winter.

Abstract

Innovative tools are urgently needed to accelerate the evaluation and subsequent approval of novel treatments that may slow, halt, or reverse the relentless progression of Parkinson disease (PD). Therapies that intervene early in the disease continuum are a priority for the many candidates in the drug development pipeline. There is a paucity of sensitive and objective, yet clinically interpretable, measures that can capture meaningful aspects of the disease. This poses a major challenge for the development of new therapies and is compounded by the considerable heterogeneity in clinical manifestations across patients and the fluctuating nature of many signs and symptoms of PD. Digital health technologies (DHT), such as smartphone applications, wearable sensors, and digital diaries, have the potential to address many of these gaps by enabling the objective, remote, and frequent measurement of PD signs and symptoms in natural living environments. The current climate of the COVID-19 pandemic creates a heightened sense of urgency for effective implementation of such strategies. In order for these technologies to be adopted in drug development studies, a regulatory-aligned consensus on best practices in implementing appropriate technologies, including the collection, processing, and interpretation of digital sensor data, is required. A growing number of collaborative initiatives are being launched to identify effective ways to advance the use of DHT in PD clinical trials. The Critical Path for Parkinson's Consortium of the Critical Path Institute is highlighted as a case example where stakeholders collectively engaged regulatory agencies on the effective use of DHT in PD clinical trials. Global regulatory agencies, including the US Food and Drug Administration and the European Medicines Agency, are encouraging the efficiencies of data-driven engagements through multistakeholder consortia. To this end, we review how the advancement of DHT can be most effectively achieved by aligning knowledge, expertise, and data sharing in ways that maximize efficiencies.

摘要

迫切需要创新工具来加速对可能减缓、阻止或逆转帕金森病(PD)无情进展的新型治疗方法的评估及后续批准。对于药物研发流程中的众多候选药物而言,在疾病进程早期进行干预的疗法是重中之重。目前缺乏敏感、客观且具有临床可解释性的措施来捕捉该疾病有意义的方面。这对新疗法的开发构成了重大挑战,而且患者临床表现的显著异质性以及PD许多体征和症状的波动特性使问题更加复杂。数字健康技术(DHT),如智能手机应用程序、可穿戴传感器和数字日记,有潜力通过在自然生活环境中对PD体征和症状进行客观、远程且频繁的测量来填补其中许多空白。当前COVID-19大流行的形势使得有效实施此类策略的紧迫感更强。为了使这些技术能够应用于药物研发研究,需要就实施适当技术的最佳实践达成与监管一致的共识,包括数字传感器数据的收集、处理和解读。越来越多的合作倡议正在启动,以确定在PD临床试验中推进DHT使用的有效方法。关键路径研究所的帕金森病关键路径联盟被作为一个案例进行重点介绍,在该案例中,利益相关者共同促使监管机构关注DHT在PD临床试验中的有效使用。包括美国食品药品监督管理局和欧洲药品管理局在内的全球监管机构都在鼓励通过多利益相关者联盟实现数据驱动参与的效率提升。为此,我们将探讨如何通过以最大化效率的方式整合知识、专业技能和数据共享,最有效地实现DHT的发展。

相似文献

2
Digital technologies: Innovations that transform the face of drug development.
Clin Transl Sci. 2023 Aug;16(8):1323-1330. doi: 10.1111/cts.13533. Epub 2023 May 8.
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Precompetitive Data Sharing as a Catalyst to Address Unmet Needs in Parkinson's Disease.
J Parkinsons Dis. 2015;5(3):581-94. doi: 10.3233/JPD-150570.

引用本文的文献

2
Characterizing gait in people with multiple sclerosis using digital data from smartphone sensors: A proposed framework.
Mult Scler. 2025 Apr;31(5):512-528. doi: 10.1177/13524585251316242. Epub 2025 Feb 18.
3
Accelerating Parkinson's Disease drug development with federated learning approaches.
NPJ Parkinsons Dis. 2024 Nov 21;10(1):225. doi: 10.1038/s41531-024-00837-5.
4
Digital biomarkers for precision diagnosis and monitoring in Parkinson's disease.
NPJ Digit Med. 2024 Aug 21;7(1):218. doi: 10.1038/s41746-024-01217-2.
5
Revolutionizing clinical trials: the role of AI in accelerating medical breakthroughs.
Int J Surg. 2023 Dec 1;109(12):4211-4220. doi: 10.1097/JS9.0000000000000705.
8
Transforming Drug Development for Neurological Disorders: Proceedings from a Multidisease Area Workshop.
Neurotherapeutics. 2023 Oct;20(6):1682-1691. doi: 10.1007/s13311-023-01440-x. Epub 2023 Oct 12.
9
Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review.
PLOS Digit Health. 2023 Oct 11;2(10):e0000347. doi: 10.1371/journal.pdig.0000347. eCollection 2023 Oct.

本文引用的文献

1
Digital Measures That Matter to Patients: A Framework to Guide the Selection and Development of Digital Measures of Health.
Digit Biomark. 2020 Sep 15;4(3):69-77. doi: 10.1159/000509725. eCollection 2020 Sep-Dec.
3
Outcome measures based on digital health technology sensor data: data- and patient-centric approaches.
NPJ Digit Med. 2020 Jul 23;3:97. doi: 10.1038/s41746-020-0305-8. eCollection 2020.
6
Digital technologies for medicines: shaping a framework for success.
Nat Rev Drug Discov. 2020 Sep;19(9):573-574. doi: 10.1038/d41573-020-00080-6.
8
The Coronavirus Disease 2019 Crisis as Catalyst for Telemedicine for Chronic Neurological Disorders.
JAMA Neurol. 2020 Aug 1;77(8):927-928. doi: 10.1001/jamaneurol.2020.1452.
9
Metadata Concepts for Advancing the Use of Digital Health Technologies in Clinical Research.
Digit Biomark. 2019 Oct 7;3(3):116-132. doi: 10.1159/000502951. eCollection 2019 Sep-Dec.
10
Indicators of retention in remote digital health studies: a cross-study evaluation of 100,000 participants.
NPJ Digit Med. 2020 Feb 17;3:21. doi: 10.1038/s41746-020-0224-8. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验