Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.
Department of Ophthalmology, School of Medicine, University of California Irvine, 850 Health Sciences Road Irvine, CA 92697, USA.
Glycobiology. 2021 Aug 7;31(7):812-826. doi: 10.1093/glycob/cwab001.
O-GlcNAcylation is a reversible post-translational protein modification that regulates fundamental cellular processes including immune responses and autoimmunity. Previously, we showed that hyperglycemia increases O-GlcNAcylation of the transcription factor, nuclear factor kappaB c-Rel at serine residue 350 and enhances the transcription of the c-Rel-dependent proautoimmune cytokines interleukin-2, interferon gamma and granulocyte macrophage colony stimulating factor in T cells. c-Rel also plays a critical role in the transcriptional regulation of forkhead box P3 (FOXP3)-the master transcription factor that governs development and function of Treg cells. Here we show that the regulatory effect of c-Rel O-GlcNAcylation is gene-dependent, and in contrast to its role in enhancing the expression of proautoimmune cytokines, it suppresses the expression of FOXP3. Hyperglycemia-induced O-GlcNAcylation-dependent suppression of FOXP3 expression was found in vivo in two mouse models of autoimmune diabetes; streptozotocin-induced diabetes and spontaneous diabetes in nonobese diabetic mice. Mechanistically, we show that both hyperglycemia-induced and chemically enhanced cellular O-GlcNAcylation decreases c-Rel binding at the FOXP3 promoter and negatively regulates FOXP3 expression. Mutation of the O-GlcNAcylation site in c-Rel, (serine 350 to alanine), augments T cell receptor-induced FOXP3 expression and resists the O-GlcNAcylation-dependent repression of FOXP3 expression. This study reveals c-Rel S350 O-GlcNAcylation as a novel molecular mechanism inversely regulating immunosuppressive FOXP3 expression and proautoimmune gene expression in autoimmune diabetes with potential therapeutic implications.
O-糖基化是一种可逆的蛋白质翻译后修饰,可调节包括免疫反应和自身免疫在内的基本细胞过程。此前,我们发现高血糖会增加转录因子核因子 kappaB c-Rel 丝氨酸残基 350 位的 O-糖基化,增强 T 细胞中 c-Rel 依赖性促自身免疫细胞因子白细胞介素 2、干扰素 γ 和粒细胞巨噬细胞集落刺激因子的转录。c-Rel 还在叉头框 P3(FOXP3)的转录调控中发挥关键作用——FOXP3 是调控 Treg 细胞发育和功能的主转录因子。在此,我们发现 c-Rel O-糖基化的调节作用是基因依赖性的,与增强促自身免疫细胞因子的表达相反,它抑制了 FOXP3 的表达。在两种自身免疫性糖尿病的小鼠模型中,即链脲佐菌素诱导的糖尿病和自发性非肥胖型糖尿病小鼠中,我们发现体内高血糖诱导的 O-糖基化依赖性 FOXP3 表达抑制。在机制上,我们表明高血糖诱导和化学增强的细胞 O-糖基化均会减少 c-Rel 在 FOXP3 启动子上的结合,并负调控 FOXP3 的表达。c-Rel 中的 O-糖基化位点(丝氨酸 350 突变为丙氨酸)的突变增强了 T 细胞受体诱导的 FOXP3 表达,并抵抗了 O-糖基化依赖性的 FOXP3 表达抑制。本研究揭示了 c-Rel S350 O-糖基化作为一种新的分子机制,可在自身免疫性糖尿病中反向调节抑制免疫的 FOXP3 表达和促自身免疫基因表达,具有潜在的治疗意义。