Vinent Orencio Durán, Schaffer Benjamin E, Rodriguez-Iturbe Ignacio
Department of Ocean Engineering, Texas A&M University, College Station, TX 77843-3136;
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08540.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2013349118. Epub 2020 Dec 21.
Barrier islands are ubiquitous coastal features that create low-energy environments where salt marshes, oyster reefs, and mangroves can develop and survive external stresses. Barrier systems also protect interior coastal communities from storm surges and wave-driven erosion. These functions depend on the existence of a slowly migrating, vertically stable barrier, a condition tied to the frequency of storm-driven overwashes and thus barrier elevation during the storm impact. The balance between erosional and accretional processes behind barrier dynamics is stochastic in nature and cannot be properly understood with traditional continuous models. Here we develop a master equation describing the stochastic dynamics of the probability density function (PDF) of barrier elevation at a point. The dynamics are controlled by two dimensionless numbers relating the average intensity and frequency of high-water events (HWEs) to the maximum dune height and dune formation time, which are in turn a function of the rate of sea level rise, sand availability, and stress of the plant ecosystem anchoring dune formation. Depending on the control parameters, the transient solution converges toward a high-elevation barrier, a low-elevation barrier, or a mixed, bimodal, state. We find the average after-storm recovery time-a relaxation time characterizing barrier's resiliency to storm impacts-changes rapidly with the control parameters, suggesting a tipping point in barrier response to external drivers. We finally derive explicit expressions for the overwash probability and average overwash frequency and transport rate characterizing the landward migration of barriers.
障壁岛是普遍存在的海岸地貌,它们营造出低能量环境,盐沼、牡蛎礁和红树林能够在其中发育并抵御外部压力。障壁系统还能保护沿海内陆社区免受风暴潮和波浪侵蚀。这些功能取决于缓慢迁移、垂直稳定的障壁的存在,这种情况与风暴引发的越浪频率相关,进而与风暴影响期间的障壁海拔有关。障壁动态背后侵蚀和堆积过程之间的平衡本质上是随机的,传统的连续模型无法恰当理解。在此,我们推导了一个主方程,描述某一点障壁海拔概率密度函数(PDF)的随机动态。该动态由两个无量纲数控制,这两个数将高水位事件(HWEs)的平均强度和频率与最大沙丘高度及沙丘形成时间联系起来,而最大沙丘高度及沙丘形成时间又是海平面上升速率、沙源可用性以及固定沙丘形成的植物生态系统应力的函数。根据控制参数,瞬态解会趋向于高海拔障壁、低海拔障壁或混合的双峰状态。我们发现风暴后的平均恢复时间——一个表征障壁对风暴影响恢复能力的弛豫时间——会随着控制参数迅速变化,这表明障壁对外部驱动因素的响应存在一个临界点。我们最终推导出了越浪概率、平均越浪频率以及表征障壁向陆迁移的输运速率的显式表达式。