Eisemann Eve R, Wallace Davin J, Buijsman Maarten C, Pierce Troy
Division of Marine Science, School of Ocean Science and Technology, University of Southern Mississippi, Stennis Space Center, MS 39529, USA.
United States Environmental Protection Agency, Gulf of Mexico Program, Gulfport, MS 39501, USA.
Geomorphology (Amst). 2018 Jul 15;313:58-71. doi: 10.1016/j.geomorph.2018.04.001.
Barrier systems around the world are experiencing accelerated sea-level rise, reduced sediment supply, and frequent hurricane impacts. However, detailed quantitative field-based studies concerning the response to these external forcing mechanisms are scarce, particularly on the scale of entire islands. The Mississippi - Alabama barrier island chain, located along the U.S. Gulf of Mexico coastline has lost land on the order of hectares per year since records began in the 1840s, putting mainland coastal communities and important ecosystems at risk. Here we present an analysis of Light Detection and Ranging (LiDAR) digital elevation models, revealing erosional/depositional patterns and geomorphologic changes around the most vulnerable of these islands, Ship Island. Four LiDAR datasets (2004, 2007, 2010, and 2012), capturing the complete topography of the island and some bathymetry in the inlet and surrounding shallows to depths of up to 8 m, are used to investigate subaerial and subaqueous sediment volume changes between these years. The impact of Hurricane Katrina, which produced the highest storm surge ever recorded in the United States, is captured in the 2004-2007 dataset. During this time, sediment comparable to 1.5 times the 2004 subaerial island volume was lost from the area included in the topographic/bathymetric dataset. Only 1/5 of this volume was recovered to this area between 2007 and 2010. The island returned to a state of sediment loss between 2010 and 2012, albeit within the error bounds, while the areal extent of the islands continued to increase. This study examines the impact severe storm events can have on vulnerable barrier islands. It highlights the importance of utilizing 3D datasets that include both topographic and bathymetric data for morphodynamic analyses of barrier island systems.
世界各地的障壁岛系统正经历着海平面加速上升、沉积物供应减少以及飓风频繁侵袭的情况。然而,关于这些外部强迫机制响应的详细定量实地研究却很匮乏,尤其是在整个岛屿尺度上。位于美国墨西哥湾沿岸的密西西比 - 亚拉巴马障壁岛链自19世纪40年代有记录以来,每年都有公顷级别的土地流失,使大陆沿海社区和重要生态系统面临风险。在此,我们对光探测与测距(LiDAR)数字高程模型进行了分析,揭示了这些岛屿中最脆弱的希普岛周围的侵蚀/沉积模式和地貌变化。利用四个LiDAR数据集(2004年、2007年、2010年和2012年),这些数据集捕捉了岛屿的完整地形以及入口和周边浅水区至8米深度的一些水深数据,来研究这些年份之间陆地和水下沉积物体积的变化。2004 - 2007年的数据集中记录了卡特里娜飓风的影响,该飓风产生了美国有记录以来最高的风暴潮。在此期间,地形/水深数据集中包含的区域损失了相当于2004年陆地岛屿体积1.5倍的沉积物。2007年至2010年期间,该区域仅恢复了这一损失量的五分之一。2010年至2012年期间,该岛虽仍在误差范围内,但又回到了沉积物流失状态,而岛屿的面积范围继续扩大。本研究考察了严重风暴事件对脆弱障壁岛可能产生的影响。它强调了利用包含地形和水深数据的三维数据集对障壁岛系统进行形态动力学分析的重要性。