Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, The Netherlands.
Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology, 904-0495 Okinawa, Japan.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2015292118.
Activity of sensory and motor cortices is essential for sensorimotor integration. In particular, coherence between these areas may indicate binding of critical functions like perception, motor planning, action, or sleep. Evidence is accumulating that cerebellar output modulates cortical activity and coherence, but how, when, and where it does so is unclear. We studied activity in and coherence between S1 and M1 cortices during whisker stimulation in the absence and presence of optogenetic Purkinje cell stimulation in crus 1 and 2 of awake mice, eliciting strong simple spike rate modulation. Without Purkinje cell stimulation, whisker stimulation triggers fast responses in S1 and M1 involving transient coherence in a broad spectrum. Simultaneous stimulation of Purkinje cells and whiskers affects amplitude and kinetics of sensory responses in S1 and M1 and alters the estimated S1-M1 coherence in theta and gamma bands, allowing bidirectional control dependent on behavioral context. These effects are absent when Purkinje cell activation is delayed by 20 ms. Focal stimulation of Purkinje cells revealed site specificity, with cells in medial crus 2 showing the most prominent and selective impact on estimated coherence, i.e., a strong suppression in the gamma but not the theta band. Granger causality analyses and computational modeling of the involved networks suggest that Purkinje cells control S1-M1 phase consistency predominantly via ventrolateral thalamus and M1. Our results indicate that activity of sensorimotor cortices can be dynamically and functionally modulated by specific cerebellar inputs, highlighting a widespread role of the cerebellum in coordinating sensorimotor behavior.
感觉和运动皮层的活动对于感觉运动整合至关重要。特别是,这些区域之间的相干性可能表明关键功能的结合,如感知、运动规划、行动或睡眠。有越来越多的证据表明小脑输出调节皮质活动和相干性,但不清楚它是如何、何时以及在何处发生的。我们在清醒小鼠的第一和第二脑桥研究了在没有和存在光遗传学浦肯野细胞刺激的情况下,胡须刺激引起的第一和第二脑桥感觉运动皮层活动和相干性。在没有浦肯野细胞刺激的情况下,胡须刺激会触发 S1 和 M1 的快速反应,涉及广谱中的瞬时相干性。浦肯野细胞和胡须的同时刺激会影响 S1 和 M1 中感觉反应的幅度和动力学,并改变θ和γ频段的估计 S1-M1 相干性,从而允许根据行为背景进行双向控制。当浦肯野细胞激活延迟 20 毫秒时,这些效果就会消失。浦肯野细胞的焦点刺激显示出部位特异性,中脑桥的细胞表现出最显著和选择性的影响对估计的相干性,即在γ频段而不是θ频段的强烈抑制。涉及网络的格兰杰因果分析和计算模型表明,浦肯野细胞主要通过腹外侧丘脑和 M1 来控制 S1-M1 的相位一致性。我们的结果表明,感觉运动皮层的活动可以被特定的小脑输入动态和功能性地调节,突出了小脑在协调感觉运动行为中的广泛作用。