Suppr超能文献

具有仿生 SCS 钳形配体的铁配合物的合成与反应性。

Synthesis and Reactivity of Iron Complexes with a Biomimetic SCS Pincer Ligand.

机构信息

Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.

出版信息

Inorg Chem. 2021 Feb 1;60(3):1965-1974. doi: 10.1021/acs.inorgchem.0c03427. Epub 2021 Jan 14.

Abstract

Recent experimental evidence suggests that the FeMoco of nitrogenase undergoes structural rearrangement during N reduction, which may result in the generation of coordinatively unsaturated iron sites with two sulfur donors and a carbon donor. In an effort to synthesize and study small-molecule model complexes with a one-carbon/two-sulfur coordination environment, we have designed two new SCS pincer ligands containing a central NHC donor accompanied by thioether- or thiolate-functionalized aryl groups. Metalation of the thioether ligand with Fe(OTf) gives 6-coordinate complexes in which the SCS ligand binds meridionally. In contrast, metalation of the thiolate ligand with Fe(HMDS) gives a four-coordinate pseudotetrahedral amide complex in which the ligand binds facially, illustrating the potential structural flexibility of these ligands. Reaction of the amide complex with a bulky monothiol gives a four-coordinate complex with a one-carbon/three-sulfur coordination environment that resembles the resting state of nitrogenase. Reaction of the amide complex with phenylhydrazine gives a product with a rare κ-bound phenylhydrazido group which undergoes N-N cleavage to give a phenylamido complex.

摘要

最近的实验证据表明,固氮酶的 FeMoco 在 N 还原过程中经历结构重排,这可能导致具有两个硫供体和一个碳供体的配位不饱和铁位点的生成。为了合成和研究具有一碳/二硫配位环境的小分子模型配合物,我们设计了两个含有中心 NHC 供体的新型 SCS 夹持配体,同时带有硫醚或硫醇官能化的芳基。用 Fe(OTf)对硫醚配体进行金属化得到六配位配合物,其中 SCS 配体以子午线方式结合。相比之下,用 Fe(HMDS)对硫醇配体进行金属化得到一个四配位的假四面体形酰胺配合物,其中配体以面方式结合,说明了这些配体的潜在结构灵活性。酰胺配合物与大位阻单硫醇反应得到一个具有一碳/三硫配位环境的四配位配合物,类似于固氮酶的休眠状态。酰胺配合物与苯肼反应得到一个具有罕见的 κ 键合苯肼基的产物,该产物发生 N-N 断裂,得到一个苯甲酰胺配合物。

相似文献

1
Synthesis and Reactivity of Iron Complexes with a Biomimetic SCS Pincer Ligand.
Inorg Chem. 2021 Feb 1;60(3):1965-1974. doi: 10.1021/acs.inorgchem.0c03427. Epub 2021 Jan 14.
2
Nitrogenase-Relevant Reactivity of a Synthetic Iron-Sulfur-Carbon Site.
J Am Chem Soc. 2019 Aug 21;141(33):13148-13157. doi: 10.1021/jacs.9b05353. Epub 2019 Aug 12.
3
Insight into the Iron-Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands.
J Am Chem Soc. 2016 Jun 15;138(23):7200-11. doi: 10.1021/jacs.6b00747. Epub 2016 Jun 3.
4
Diiron bridged-thiolate complexes that bind N2 at the Fe(II)Fe(II), Fe(II)Fe(I), and Fe(I)Fe(I) redox states.
J Am Chem Soc. 2015 Jun 17;137(23):7310-3. doi: 10.1021/jacs.5b04738. Epub 2015 Jun 9.
5
Effects of Thiolate Ligation in Monoiron Hydrogenase (Hmd): Stability of the {Fe(CO)} Core with NNS Ligands.
Inorg Chem. 2018 Aug 20;57(16):10028-10039. doi: 10.1021/acs.inorgchem.8b01185. Epub 2018 Aug 2.
8
Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic.
Nat Chem. 2013 Apr;5(4):320-6. doi: 10.1038/nchem.1594. Epub 2013 Mar 17.
10
Axial and equatorial ligand effects on biomimetic cysteine dioxygenase model complexes.
Org Biomol Chem. 2012 Jul 28;10(28):5401-9. doi: 10.1039/c2ob25406a. Epub 2012 Jun 19.

引用本文的文献

2
Desulfurization and N Binding at an Iron Complex Derived from the C-S Activation of Benzothiophene.
Organometallics. 2023 Aug 14;42(15):2019-2027. doi: 10.1021/acs.organomet.3c00220. Epub 2023 Jul 21.
3
Iron Complexes of a Proton-Responsive SCS Pincer Ligand with a Sensitive Electronic Structure.
Inorg Chem. 2022 Jan 24;61(3):1644-1658. doi: 10.1021/acs.inorgchem.1c03499. Epub 2022 Jan 5.

本文引用的文献

1
Facile H/D Exchange at (Hetero)Aromatic Hydrocarbons Catalyzed by a Stable Trans-Dihydride N-Heterocyclic Carbene (NHC) Iron Complex.
J Am Chem Soc. 2020 Oct 7;142(40):17131-17139. doi: 10.1021/jacs.0c07689. Epub 2020 Sep 22.
2
Reversible Formation of Alkyl Radicals at [FeS] Clusters and Its Implications for Selectivity in Radical SAM Enzymes.
J Am Chem Soc. 2020 Aug 19;142(33):14240-14248. doi: 10.1021/jacs.0c05590. Epub 2020 Aug 6.
3
Structural evidence for a dynamic metallocofactor during N reduction by Mo-nitrogenase.
Science. 2020 Jun 19;368(6497):1381-1385. doi: 10.1126/science.aaz6748.
4
Structural Enzymology of Nitrogenase Enzymes.
Chem Rev. 2020 Jun 24;120(12):4969-5004. doi: 10.1021/acs.chemrev.0c00067. Epub 2020 Jun 15.
5
Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics.
Chem Rev. 2020 Jun 24;120(12):5308-5351. doi: 10.1021/acs.chemrev.9b00613. Epub 2020 Jun 12.
6
Metal-Sulfur Compounds in N Reduction and Nitrogenase-Related Chemistry.
Chem Rev. 2020 Jun 24;120(12):5194-5251. doi: 10.1021/acs.chemrev.9b00544. Epub 2020 May 27.
7
Catalytic N-to-NH (or -NH) Conversion by Well-Defined Molecular Coordination Complexes.
Chem Rev. 2020 Jun 24;120(12):5582-5636. doi: 10.1021/acs.chemrev.9b00638. Epub 2020 Apr 30.
8
An Iron Pincer Complex in Four Oxidation States.
Inorg Chem. 2020 Apr 20;59(8):5632-5645. doi: 10.1021/acs.inorgchem.0c00355. Epub 2020 Apr 9.
9
Reduction of Substrates by Nitrogenases.
Chem Rev. 2020 Jun 24;120(12):5082-5106. doi: 10.1021/acs.chemrev.9b00556. Epub 2020 Mar 16.
10
Iron N-heterocyclic carbene complexes in homogeneous catalysis.
Chem Soc Rev. 2020 Feb 24;49(4):1209-1232. doi: 10.1039/c9cs00508k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验