Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
Org Biomol Chem. 2012 Jul 28;10(28):5401-9. doi: 10.1039/c2ob25406a. Epub 2012 Jun 19.
Density functional theory (DFT) calculations are presented on biomimetic model complexes of cysteine dioxygenase and focus on the effect of axial and equatorial ligand placement. Recent studies by one of us [Y. M. Badiei, M. A. Siegler and D. P. Goldberg, J. Am. Chem. Soc. 2011, 133, 1274] gave evidence of a nonheme iron biomimetic model of cysteine dioxygenase using an i-propyl-bis(imino)pyridine, equatorial tridentate ligand. Addition of thiophenol, an anion - either chloride or triflate - and molecular oxygen, led to several possible stereoisomers of this cysteine dioxygenase biomimetic complex. Moreover, large differences in reactivity using chloride as compared to triflate as the binding anion were observed. Here we present a series of DFT calculations on the origin of these reactivity differences and show that it is caused by the preference of coordination site of anion versus thiophenol binding to the chemical system. Thus, stereochemical interactions of triflate and the bulky iso-propyl substituents of the ligand prevent binding of thiophenol in the trans position using triflate. By contrast, smaller anions, such as chloride, can bind in either cis or trans ligand positions and give isomers with similar stability. Our calculations help to explain the observance of thiophenol dioxygenation by this biomimetic system and gives details of the reactivity differences of ligated chloride versus triflate.
密度泛函理论(DFT)计算被提出在半胱氨酸双加氧酶的仿生模型复合物,并专注于轴向和赤道配体位置的影响。我们中的一位研究人员[Y. M. Badiei、M. A. Siegler 和 D. P. Goldberg,J. Am. Chem. Soc. 2011,133,1274]最近的研究提供了使用异丙基-双(亚氨基)吡啶,赤道三齿配体的非血红素铁仿生模型半胱氨酸双加氧酶的证据。添加巯基苯酚,阴离子 - 无论是氯离子还是三氟甲磺酸根 - 和分子氧,导致该半胱氨酸双加氧酶仿生模型复合物的几个可能的立体异构体。此外,与三氟甲磺酸根作为结合阴离子相比,使用氯离子观察到反应性的差异很大。在这里,我们提出了一系列关于这些反应性差异起源的 DFT 计算,并表明这是由于阴离子与巯基苯酚的配位位点对化学体系的结合偏好所致。因此,三氟甲磺酸根和配体的庞大异丙基取代基的立体化学相互作用阻止了三氟甲磺酸根在反式位置与巯基苯酚结合。相比之下,较小的阴离子,如氯离子,可以在顺式或反式配体位置结合,并给出具有相似稳定性的异构体。我们的计算有助于解释这个仿生体系对半胱氨酸苯酚的加氧作用的观察,并详细说明了配位氯离子与三氟甲磺酸根的反应性差异。