Khan Mohd A, Haase Martin F
Van't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, CH 3583, The Netherlands.
Soft Matter. 2021 Mar 4;17(8):2034-2041. doi: 10.1039/d0sm02120b.
Droplets are spherical due to the principle of interfacial energy minimization. Here, we show that nonequilibrium droplet shapes can be stabilized via the interfacial self-assembly and crosslinking of nanoparticles. This principle allows for the stability of practically infinitely long liquid tubules and monodisperse cylindrical droplets. Droplets of oil-in-water are elongated via gravitational or hydrodynamic forces at a reduced interfacial tension. Silica nanoparticles self-assemble and cross-link on the interface triggered by the synergistic surface modification with hexyltrimethylammonium- and trivalent lanthanum-cations. The droplet length dependence is described by a scaling relationship and the rate of nanoparticle deposition on the droplets is estimated. Our approach potentially enables the 3D-printing of Newtonian Fluids, broadening the array of material options for additive manufacturing techniques.
由于界面能最小化原理,液滴呈球形。在此,我们表明,通过纳米颗粒的界面自组装和交联,可以稳定非平衡液滴形状。这一原理使得实际上无限长的液体细管和单分散圆柱形液滴得以稳定。水包油液滴在降低的界面张力下通过重力或流体动力作用而拉长。由己基三甲基铵和三价镧阳离子的协同表面改性引发,二氧化硅纳米颗粒在界面上自组装并交联。液滴长度依赖性由标度关系描述,并估计了纳米颗粒在液滴上的沉积速率。我们的方法有可能实现牛顿流体的3D打印,拓宽增材制造技术的材料选择范围。