Desvignes Léonard, Stolyarov Vasily S, Aprili Marco, Massee Freek
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
ACS Nano. 2021 Jan 26;15(1):1421-1425. doi: 10.1021/acsnano.0c08718. Epub 2021 Jan 14.
The ability to manipulate individual atoms and molecules using a scanning tunneling microscope (STM) has been crucial for the development of a vast array of atomic-scale devices and structures ranging from nanoscale motors and switches to quantum corrals. Molecular motors in particular have attracted considerable attention in view of their potential for assembly into complex nanoscale machines. Whereas the manipulated atoms or molecules are usually on top of a substrate, motors embedded in a lattice can be very beneficial for bottom-up construction, and may additionally be used to probe the influence of the lattice on the electronic properties of the host material. Here, we present the discovery of controlled manipulation of a rotor in Fe doped BiSe. We find that the current into the rotor, which can be finely tuned with the voltage, drives omni-directional switching between three equivalent orientations, each of which can be frozen in at small bias voltage. Using current fluctuation measurements at 1 MHz and model simulations, we estimate that switching rates of hundreds of kHz for sub-nanoampere currents are achieved.
利用扫描隧道显微镜(STM)操纵单个原子和分子的能力对于从纳米级电机和开关到量子围栏等大量原子尺度器件和结构的发展至关重要。特别是分子电机,鉴于其组装成复杂纳米级机器的潜力,已引起了相当大的关注。虽然被操纵的原子或分子通常位于衬底之上,但嵌入晶格中的电机对于自下而上的构建可能非常有益,并且还可用于探测晶格对主体材料电子特性的影响。在此,我们展示了在铁掺杂的BiSe中对转子进行可控操纵的发现。我们发现流入转子的电流可通过电压进行精细调节,该电流驱动转子在三个等效取向之间进行全向切换,每个取向都可在小偏置电压下冻结。通过在1 MHz下进行电流涨落测量和模型模拟,我们估计对于亚纳安电流可实现数百kHz的切换速率。