Nishiguchi Akihiro, Matsusaki Michiya, Akashi Mitsuru
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
ACS Biomater Sci Eng. 2015 Sep 14;1(9):816-824. doi: 10.1021/acsbiomaterials.5b00188. Epub 2015 Aug 6.
Modulation of living cell surfaces by chemical and biological engineering and the control of cellular functions has enormous potential for immunotherapy, transplantation, and drug delivery. However, traditional detection techniques have limitations in the identification of physical properties of viscoelastic films and interaction with living cells in real time. Here, we present the structural analysis of extracellular matrix (ECM) based nanofilms and their interaction with living cells using a quartz crystal microbalance (QCM) with dissipation (QCM-D), multiple parameter surface plasmon resonance (SPR), and flow cytometry measurements. QCM-D measurements according to the Voigt-based viscoelastic model allowed for the evaluation of the kinetic adsorption of extracellular matrix (ECM) proteins and physical parameters of viscoelastic ECM-nanofilms in a swelled state. These results reflected the characteristics of viscoelastic films as compared to Sauerbrey's equation. Moreover, we found that gelatin molecules played a crucial role as a binder to build up layered films and control their properties. Using the multiple parameter SPR approach, we confirmed the interaction between FN-G nanofilms and living cells from signal response in real time which was different from the gold substrate-protein signal. Moreover, flow cytometry analysis supported the importance of the domain interaction between the RGD sequence in FN and integrin as a driving force to form the films on cell surfaces. The use of three different analyses supported clarification of the contribution of the protein-protein interaction and viscoelastic properties of ECM films and investigation of the interaction between films and living cells. The knowledge regarding protein-protein and protein-cell interaction in real time would make a contribution to biomaterial design by using protein interactions for modulating the living cell surfaces in biomedical applications.
通过化学和生物工程对活细胞表面进行调控以及对细胞功能的控制在免疫治疗、移植和药物递送方面具有巨大潜力。然而,传统检测技术在实时识别粘弹性膜的物理性质以及与活细胞的相互作用方面存在局限性。在此,我们使用具有耗散功能的石英晶体微天平(QCM-D)、多参数表面等离子体共振(SPR)和流式细胞术测量,对基于细胞外基质(ECM)的纳米膜及其与活细胞的相互作用进行了结构分析。根据基于Voigt模型的粘弹性模型进行的QCM-D测量,能够评估细胞外基质(ECM)蛋白的动力学吸附以及处于溶胀状态的粘弹性ECM纳米膜的物理参数。这些结果与Sauerbrey方程相比,反映了粘弹性膜的特性。此外,我们发现明胶分子作为粘合剂在构建层状膜并控制其性质方面起着关键作用。使用多参数SPR方法,我们从实时信号响应中证实了FN-G纳米膜与活细胞之间的相互作用,这与金基底-蛋白信号不同。此外,流式细胞术分析支持了FN中RGD序列与整合素之间的结构域相互作用作为在细胞表面形成膜的驱动力的重要性。使用三种不同的分析方法有助于阐明ECM膜的蛋白质-蛋白质相互作用和粘弹性性质的贡献,并研究膜与活细胞之间的相互作用。关于蛋白质-蛋白质和蛋白质-细胞实时相互作用的知识将通过利用蛋白质相互作用在生物医学应用中调节活细胞表面,为生物材料设计做出贡献。