Suppr超能文献

Regional cerebral blood flow during hypoxia-ischemia in immature rats.

作者信息

Vannucci R C, Lyons D T, Vasta F

机构信息

Department of Pediatrics, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033.

出版信息

Stroke. 1988 Feb;19(2):245-50. doi: 10.1161/01.str.19.2.245.

Abstract

Immature rats subjected to a combination of unilateral common carotid artery ligation and hypoxia sustain brain damage confined largely to the ipsilateral cerebral hemisphere. To ascertain the extent and distribution of ischemic alterations in the brains of these small animals, we modified the Sakurada technique to measure regional cerebral blood flow using carbon-14 autoradiography. Seven-day-old rats underwent right common carotid artery ligation following which they were rendered hypoxic with 8% O2 at 37 degrees C. Before and during hypoxia, the rat pups received an injection of iodo[14C]antipyrine for determination of regional cerebral blood flow. Blood flows to individual structures of the ipsilateral cerebral hemisphere were not influenced by arterial occlusion alone; flows to the contralateral hemisphere and to the brainstem and cerebellum actually increased by 25-50%. Hypoxia-ischemia was associated with decreases in regional cerebral blood flow of the ipsilateral hemisphere such that by 2 hours, flows to subcortical white matter, neocortex, striatum, and thalamus were 15, 17, 34, and 41% of control, respectively. The hierarchy of the blood flow reductions correlated closely with the distribution and extent of ischemic neuronal necrosis. However, unlike the pathologic pattern of this model, the degree of ischemia appeared homogeneous within each brain region. Blood flows to contralateral cerebral hemispheric structures were relatively unchanged from prehypoxic values, whereas flows to the brainstem and cerebellum nearly doubled and tripled, respectively. Thus, ischemia is the predominant factor that determines the topography of tissue injury to major regions of immature rat brain, whereas metabolic factors (intrinsic vulnerability) may influence the heterogeneous pattern of damage seen within individual structures.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验