Suppr超能文献

基于自适应阈值和贪婪合并的亲和传播算法在云无线接入网络中的RRH聚类

RRH Clustering Using Affinity Propagation Algorithm with Adaptive Thresholding and Greedy Merging in Cloud Radio Access Network.

作者信息

Park Seju, Jo Han-Shin, Mun Cheol, Yook Jong-Gwan

机构信息

Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea.

Department of Electronics and Control Engineering, Hanbat National University, Daejeon 34158, Korea.

出版信息

Sensors (Basel). 2021 Jan 12;21(2):480. doi: 10.3390/s21020480.

Abstract

Affinity propagation (AP) clustering with low complexity and high performance is suitable for radio remote head (RRH) clustering for real-time joint transmission in the cloud radio access network. The existing AP algorithms for joint transmission have the limitation of high computational complexities owing to re-sweeping preferences (diagonal components of the similarity matrix) to determine the optimal number of clusters as system parameters such as network topology. To overcome this limitation, we propose a new approach in which preferences are fixed, where the threshold changes in response to the variations in system parameters. In AP clustering, each diagonal value of a final converged matrix is mapped to the position (x,y coordinates) of a corresponding RRH to form two-dimensional image. Furthermore, an environment-adaptive threshold value is determined by adopting Otsu's method, which uses the gray-scale histogram of the image to make a statistical decision. Additionally, a simple greedy merging algorithm is proposed to resolve the problem of inter-cluster interference owing to the adjacent RRHs selected as exemplars (cluster centers). For a realistic performance assessment, both grid and uniform network topologies are considered, including exterior interference and various transmitting power levels of an RRH. It is demonstrated that with similar normalized execution times, the proposed algorithm provides better spectral and energy efficiencies than those of the existing algorithms.

摘要

具有低复杂度和高性能的亲和传播(AP)聚类适用于云无线接入网络中用于实时联合传输的无线远程头(RRH)聚类。现有的用于联合传输的AP算法由于需要重新扫描偏好(相似性矩阵的对角分量)来确定作为网络拓扑等系统参数的最优簇数,存在计算复杂度高的局限性。为克服这一局限性,我们提出一种新方法,其中偏好是固定的,阈值根据系统参数的变化而改变。在AP聚类中,最终收敛矩阵的每个对角值被映射到相应RRH的位置(x,y坐标)以形成二维图像。此外,采用大津法确定环境自适应阈值,该方法利用图像的灰度直方图进行统计决策。另外,提出一种简单的贪婪合并算法来解决由于被选为范例(簇中心)的相邻RRH导致的簇间干扰问题。为进行实际性能评估,考虑了网格和均匀网络拓扑,包括外部干扰和RRH的各种发射功率水平。结果表明,在归一化执行时间相似的情况下,所提算法比现有算法具有更好的频谱和能量效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b9/7828081/ac615cb09794/sensors-21-00480-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验