Long Yubo, Chen Xiaojie, Wu Huiyan, Zhou Zhuxin, Sriram Babu Seenivasagaperumal, Wu Minming, Zhao Juan, Aldred Matthew P, Liu Siwei, Chen Xudong, Chi Zhenguo, Xu Jiarui, Zhang Yi
Department PCFM Lab and GD HPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
State Key Laboratory of Optoelectronic Material and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
Angew Chem Int Ed Engl. 2021 Mar 22;60(13):7220-7226. doi: 10.1002/anie.202016053. Epub 2021 Feb 25.
A series of rigid nonconjugated polyimide (PI)-based thermally activated delayed fluorescence (TADF) polymers were reported for the first time, based on a "TADF-Linker-Host" strategy. Among of which, the TADF unit contains a typical TADF luminous core structure, the "Host" unit exhibits effective conjugation length that endows polyimide with high triplet energy, and the "Linker" unit has an aliphatic ring structure to improve solubility and inhibits intramolecular charge transfer effect. All the TADF polymers exhibit high thermal stability (T >308.7 °C) and refractive index (1.76-1.79). Remarkably, highly-efficient polymer light-emitting diodes (PLEDs) based on the polymers are successfully realized, leading to a maximal external quantum efficiency of 21.0 % along with low efficiency roll-off. Such outstanding efficiency is amongst the state-of-the-art performance of nonconjugated PLEDs, confirming the effectiveness of structural design strategy, providing helpful and valuable guidance on the development of highly-efficient fluorescent polymer materials and PLEDs.
首次报道了基于“热激活延迟荧光(TADF)-连接体-主体”策略的一系列刚性非共轭聚酰亚胺(PI)基热激活延迟荧光聚合物。其中,TADF单元包含典型的TADF发光核心结构,“主体”单元具有有效的共轭长度,赋予聚酰亚胺高的三线态能量,“连接体”单元具有脂肪族环结构以提高溶解性并抑制分子内电荷转移效应。所有TADF聚合物均表现出高的热稳定性(T>308.7°C)和折射率(1.76 - 1.79)。值得注意的是,基于这些聚合物成功实现了高效聚合物发光二极管(PLED),最大外量子效率达到21.0%,且效率滚降较低。这种出色的效率处于非共轭PLED的最先进性能之列,证实了结构设计策略的有效性,为高效荧光聚合物材料和PLED的发展提供了有益且有价值的指导。