Banerjee Abhisek, Das Dhananjoy, Ray Partha Pratim, Banerjee Snehasis, Chattopadhyay Shouvik
Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata-700032, India.
Department of Physics, Jadavpur University, Kolkata-700032, India.
Dalton Trans. 2021 Feb 9;50(5):1721-1732. doi: 10.1039/d0dt03707a.
Two homometallic class-I dinuclear mixed valence cobalt complexes, [(N3)CoIIIL1(μ-C6H4(NO2)CO2)CoII(N3)] (1) and [(N3)CoIIIL2(μ-C6H4(NO2)CO2)CoII(N3)] (2), have been synthesized using multisite N2O4 coordination ligands, H2L1 {where H2L1 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-methoxyphenol) and H2L2 = (2,2-dimethyl-1,3-propanediyl)bis(iminomethylene)bis(6-ethoxyphenol)}. Each complex has been structurally characterized by single crystal X-ray diffraction and spectral analysis. Both the cobalt centers in these dinuclear complexes adopt a distorted-octahedral geometry, where the cobalt(iii) center resides at the inner N2O2 cavity and the cobalt(ii) center resides at the outer O4 cavity of the reduced Schiff base. Both of them show good electrical conductivity, which has been rationalized by band gap measurements. The band gap in the solid state has been determined by experimental and DFT calculations and it confirms that each of the two complexes behaves as a semiconductor. The space-charge-limited current (SCLC) theory is employed to evaluate the charge transport parameters such as effective carrier mobility and transit time for both complexes. The difference in the conductivity values of the complexes may be correlated with the strengths of extended supramolecular interactions in the complexes. Bader's quantum theory of atoms-in-molecules (QTAIM) is applied extensively to get quantitative and qualitative insights into the physical nature of weak non-covalent interactions. In addition, the non-covalent interaction reduced density gradient (NCI-RDG) methods well support the presence of such non-covalent intermolecular interactions.
利用多位点N₂O₄配位配体H₂L₁{其中H₂L₁ = (2,2 - 二甲基 - 1,3 - 丙二基)双(亚氨基亚甲基)双(6 - 甲氧基苯酚)和H₂L₂ = (2,2 - 二甲基 - 1,3 - 丙二基)双(亚氨基亚甲基)双(6 - 乙氧基苯酚)}合成了两种同金属I类双核混合价钴配合物[(N₃)CoIIIL₁(μ - C₆H₄(NO₂)CO₂)CoII(N₃)] (1)和[(N₃)CoIIIL₂(μ - C₆H₄(NO₂)CO₂)CoII(N₃)] (2)。通过单晶X射线衍射和光谱分析对每种配合物进行了结构表征。这些双核配合物中的两个钴中心均采用扭曲八面体几何构型,其中钴(III)中心位于还原席夫碱的内部N₂O₂腔中,钴(II)中心位于外部O₄腔中。它们都表现出良好的导电性,这已通过带隙测量得到合理解释。通过实验和DFT计算确定了固态下的带隙,证实这两种配合物均表现为半导体。采用空间电荷限制电流(SCLC)理论评估了两种配合物的电荷传输参数,如有效载流子迁移率和渡越时间。配合物电导率值的差异可能与配合物中扩展超分子相互作用的强度相关。广泛应用了巴德的分子中的原子量子理论(QTAIM),以对弱非共价相互作用的物理性质进行定量和定性的深入了解。此外,非共价相互作用降低密度梯度(NCI - RDG)方法很好地支持了这种非共价分子间相互作用的存在。