Suppr超能文献

重构氢键相互作用导致 Caspase-3 的特异性放松。

Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3.

机构信息

Department of Biology, University of Texas at Arlington, Arlington, TX 76019, U.S.A.

Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC 27608, U.S.A.

出版信息

Biosci Rep. 2021 Jan 29;41(1). doi: 10.1042/BSR20203495.

Abstract

Caspase (or cysteinyl-aspartate specific proteases) enzymes play important roles in apoptosis and inflammation, and the non-identical but overlapping specificity profiles (that is, cleavage recognition sequence) direct cells to different fates. Although all caspases prefer aspartate at the P1 position of the substrate, the caspase-6 subfamily shows preference for valine at the P4 position, while caspase-3 shows preference for aspartate. In comparison with human caspases, caspase-3a from zebrafish has relaxed specificity and demonstrates equal selection for either valine or aspartate at the P4 position. In the context of the caspase-3 conformational landscape, we show that changes in hydrogen bonding near the S3 subsite affect selection of the P4 amino acid. Swapping specificity with caspase-6 requires accessing new conformational space, where each landscape results in optimal binding of DxxD (caspase-3) or VxxD (caspase-6) substrate and simultaneously disfavors binding of the other substrate. Within the context of the caspase-3 conformational landscape, substitutions near the active site result in nearly equal activity against DxxD and VxxD by disrupting a hydrogen bonding network in the substrate binding pocket. The converse substitutions in zebrafish caspase-3a result in increased selection for P4 aspartate over valine. Overall, the data show that the shift in specificity that results in a dual function protease, as in zebrafish caspase-3a, requires fewer amino acid substitutions compared with those required to access new conformational space for swapping substrate specificity, such as between caspases-3 and -6.

摘要

半胱氨酸天冬氨酸特异性蛋白酶(caspase)在细胞凋亡和炎症中发挥重要作用,其非完全但重叠的特异性谱(即切割识别序列)引导细胞走向不同的命运。尽管所有的半胱天冬酶都优先在底物的 P1 位选择天冬氨酸,但半胱天冬酶-6 亚家族在 P4 位更喜欢缬氨酸,而半胱天冬酶-3 则更喜欢天冬氨酸。与人类半胱天冬酶相比,斑马鱼中的半胱天冬酶-3a 具有较宽松的特异性,并且在 P4 位对缬氨酸或天冬氨酸的选择相等。在半胱天冬酶-3 构象景观的背景下,我们表明 S3 亚位附近氢键的变化会影响 P4 氨基酸的选择。与半胱天冬酶-6 交换特异性需要进入新的构象空间,在每个构象空间中,DxxD(半胱天冬酶-3)或 VxxD(半胱天冬酶-6)底物的最佳结合同时不利于另一种底物的结合。在半胱天冬酶-3 构象景观的背景下,活性位点附近的取代会通过破坏底物结合口袋中的氢键网络,导致对 DxxD 和 VxxD 的几乎相同的活性,从而导致对 DxxD 和 VxxD 的几乎相同的活性。在斑马鱼半胱天冬酶-3a 中的相反取代会导致 P4 天冬氨酸相对于缬氨酸的选择增加。总的来说,数据表明,导致具有双重功能的蛋白酶的特异性转变,如在斑马鱼半胱天冬酶-3a 中,与为了获得新的构象空间来交换底物特异性(如半胱天冬酶-3 和 -6 之间)相比,需要更少的氨基酸取代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a232/7846959/78793e8f9cc1/bsr-41-bsr20203495-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验