Sarkar Biplab, Siddiqui Zain, Nguyen Peter K, Dube Namita, Fu Wanyi, Park Steven, Jaisinghani Shivani, Paul Reshma, Kozuch Stephen D, Deng Daiyong, Iglesias-Montoro Patricia, Li Mengyan, Sabatino David, Perlin David S, Zhang Wen, Mondal Jagannath, Kumar Vivek A
Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States.
Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 500075 Hyderabad, India.
ACS Biomater Sci Eng. 2019 Sep 9;5(9):4657-4670. doi: 10.1021/acsbiomaterials.9b00967. Epub 2019 Aug 6.
Self-assembled peptide nanofibers can form biomimetic hydrogels at physiological pH and ionic strength through noncovalent and reversible interactions. Inspired by natural antimicrobial peptides, we designed a class of cationic amphiphilic self-assembled peptides (CASPs) that self-assemble into thixotropic nanofibrous hydrogels. These constructs employ amphiphilicity and high terminal charge density to disrupt bacterial membranes. Here, we focus on three aspects of the self-assembly of these hydrogels: (a) the material properties of the individual self-assembled nanofibers, (b) emergence of bulk-scale elasticity in the nanofibrous hydrogel, and (c) trade-off between the desirable material properties and antimicrobial efficacy. The design of the supramolecular nanofibers allows for higher-order noncovalent ionic cross-linking of the nanofibers into a viscoelastic network. We determine the stiffness of the self-assembled nanofibers via the peak force quantitative nanomechanical atomic force microscopy and the bulk-scale rheometry. The storage moduli depend on peptide concentration, ionic strength, and concentration of multivalent ionic cross-linker. CASP nanofibers are demonstrated to be effective against colonies. We use nanomechanical analysis and microsecond-time scale coarse-grained simulation to elucidate the interaction between the peptides and bacterial membranes. We demonstrate that the membranes stiffen, contract, and buckle after binding to peptide nanofibers, allowing disruption of osmotic equilibrium between the intracellular and extracellular matrix. This is further associated with dramatic changes in cell morphology. Our studies suggest that self-assembled peptide nanofibrils can potentially acts as membrane-disrupting antimicrobial agents, which can be formulated as injectable hydrogels with tunable material properties.
自组装肽纳米纤维可在生理pH值和离子强度下通过非共价和可逆相互作用形成仿生水凝胶。受天然抗菌肽的启发,我们设计了一类阳离子两亲性自组装肽(CASP),它们可自组装成触变性纳米纤维水凝胶。这些构建体利用两亲性和高末端电荷密度来破坏细菌膜。在此,我们关注这些水凝胶自组装的三个方面:(a)单个自组装纳米纤维的材料特性,(b)纳米纤维水凝胶中宏观尺度弹性的出现,以及(c)理想材料特性与抗菌功效之间的权衡。超分子纳米纤维的设计允许纳米纤维进行高阶非共价离子交联形成粘弹性网络。我们通过峰值力定量纳米力学原子力显微镜和宏观尺度流变学来确定自组装纳米纤维的刚度。储能模量取决于肽浓度、离子强度和多价离子交联剂的浓度。已证明CASP纳米纤维对菌落有效。我们使用纳米力学分析和微秒时间尺度的粗粒度模拟来阐明肽与细菌膜之间的相互作用。我们证明,膜在与肽纳米纤维结合后会变硬、收缩并弯曲,从而破坏细胞内和细胞外基质之间的渗透平衡。这进一步与细胞形态的显著变化相关。我们的研究表明,自组装肽纳米原纤维有可能作为破坏膜的抗菌剂,可配制成具有可调材料特性的可注射水凝胶。