Chen Mingli, Wardak Zabi, Stojadinovic Strahinja, Gu Xuejun, Lu Weiguo
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Med Phys. 2021 Apr;48(4):1832-1838. doi: 10.1002/mp.14722. Epub 2021 Feb 22.
Stereotactic radiosurgery (SRS) has become a primary treatment for multiple brain metastases (BM) but may require distribution of BMs over several sessions to make delivery time and radiation toxicity manageable. Contrasting to equal fraction dose in conventional fractionation, distributed SRS delivers full dose to a subset of BMs in each session while avoiding adjacent BMs in the same session to reduce toxicity from overlapping radiation. However, current clinical treatment planning for distributed SRS relies on manual BM assignment, which can be tedious and error prone. This work describes a novel approach to automate the distribution of BM in the Gamma Knife (GK) clinical workflow.
We represent each BM as an electrostatic field of the same polarity that exerts repulsive forces on other BMs in the same session. This representation naturally leads to separation of close BMs into different sessions to lower the potential energy. Indeed, the BM distribution problem can be formulated as minimization of the total potential energy from all treatment sessions subject to delivery time constraints in mixed-integer quadratic programming (MIQP). We retrospectively studied eight clinical GK cases of multiple BM and compared the automated MIQP solution with clinically used BM distribution to demonstrate the efficacy of the proposed approach.
With the problem size equal to the number of BMs times the number of sessions, this MIQP can be solved in a minute on a personal workstation. The MIQP solution effectively separated BMs for a given number of treatment sessions and evened out the delivery time distribution among sessions. Compared to the clinically used manual BM distributions in paired t-test for a similar range of delivery time variation, the automated BM distributions had lower energy objectives (range of decrease: [11% 89%]; median: 25%; ), more uniformly distributed treatment volumes (range of decrease for the normalized standard deviation of volume distribution: [0.02 0.95]; median: 0.16; ), more scattered BMs in each treatment session (range of increase for the mean minimum BM distance: [0 14] mm; median: 6 mm; ), and lower overall (range of decrease: [0.0 1.6] cc; median: 0.2 cc; ). Moreover, without distribution, that is, with all BMs treated in the same session, was substantially larger compared to both manual and automated BM distributions; the increase ranged from 0.1 to 16.6 cc with a median of 1.3 cc.
The proposed approach models the clinical practice and provides an efficient solution for optimal selection of BM subsets for distributed SRS. Further evaluations are underway to establish this approach as a tool for improving clinical workflow and to facilitate systematic study on the benefits of distributed SRS treatments.
立体定向放射外科(SRS)已成为治疗多发性脑转移瘤(BM)的主要方法,但可能需要在多个疗程中对脑转移瘤进行分配,以使照射时间和放射毒性可控。与传统分割放疗中的等分割剂量不同,分布式SRS在每个疗程中对一部分脑转移瘤给予全剂量照射,同时在同一疗程中避开相邻的脑转移瘤,以减少重叠照射带来的毒性。然而,目前分布式SRS的临床治疗计划依赖于手动分配脑转移瘤,这可能既繁琐又容易出错。这项工作描述了一种在伽玛刀(GK)临床工作流程中自动分配脑转移瘤的新方法。
我们将每个脑转移瘤表示为具有相同极性的静电场,该静电场会对同一疗程中的其他脑转移瘤施加排斥力。这种表示自然会使相邻的脑转移瘤分隔到不同的疗程中,以降低势能。实际上,脑转移瘤分配问题可以表述为在混合整数二次规划(MIQP)中,在满足照射时间限制的条件下,使所有治疗疗程的总势能最小化。我们回顾性研究了8例GK治疗多发性脑转移瘤的临床病例,并将自动MIQP解决方案与临床使用的脑转移瘤分配方法进行比较,以证明所提方法的有效性。
对于问题规模等于脑转移瘤数量乘以疗程数量的情况,该MIQP在个人工作站上一分钟内即可求解。MIQP解决方案能有效地为给定数量的治疗疗程分隔脑转移瘤,并使各疗程之间的照射时间分布均匀。在类似照射时间变化范围内的配对t检验中,与临床使用的手动脑转移瘤分配相比,自动脑转移瘤分配具有更低的能量目标(降低范围:[11% 89%];中位数:25%; )、更均匀分布的治疗体积(体积分布标准化标准差的降低范围:[0.02 0.95];中位数:0.16; )、每个治疗疗程中更分散的脑转移瘤(平均最小脑转移瘤距离的增加范围:[0 14]毫米;中位数:6毫米; )以及更低的总体 (降低范围:[0.0 1.6]立方厘米;中位数:0.2立方厘米; )。此外,不进行分配,即所有脑转移瘤在同一疗程中治疗时, 与手动和自动脑转移瘤分配相比都显著更大;增加范围为0.1至16.6立方厘米,中位数为1.3立方厘米。
所提方法模拟了临床实践,并为分布式SRS的脑转移瘤子集的最佳选择提供了一种有效的解决方案。正在进行进一步评估,以将该方法确立为改善临床工作流程的工具,并促进对分布式SRS治疗益处的系统研究。