Department of Neuroscience, Cell Biology and Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH, 45435, USA.
Department of Neurology and Internal Medicine, Wright State University, Boonshoft School of Medicine, Dayton, OH, 45435, USA.
J Physiol. 2021 Mar;599(5):1391-1420. doi: 10.1113/JP278675. Epub 2021 Jan 24.
The spatial and temporal balance of spinal α-motoneuron (αMN) intrinsic membrane conductances underlies the neural output of the final common pathway for motor commands. Although the complete set and precise localization of αMN K channels and their respective outward conductances remain unsettled, important K channel subtypes have now been documented, including Kv1, Kv2, Kv7, TASK, HCN and SK isoforms. Unique kinetics and gating parameters allow these channels to differentially shape and/or modify αMN firing properties, and recent immunohistochemical localization of K -channel complexes reveals a framework in which their spatial distribution and/or focal clustering within different surface membrane compartments is highly tuned to their physiological function. Moreover, highly evolved regulatory mechanisms enable specific channels to operate over variable levels of αMN activity and contribute to either state-dependent enhancement or diminution of firing. While recent data suggest an additional, non-conducting role for clustered Kv2.1 channels in the formation of endoplasmic reticulum-plasma membrane junctions postsynaptic to C-bouton synapses, electrophysiological evidence demonstrates that conducting Kv2.1 channels effectively regulate αMN firing, especially during periods of high activity in which the cholinergic C-boutons are engaged. Intense αMN activity or cell injury rapidly disrupts the clustered organization of Kv2.1 channels in αMNs and further impacts their physiological role. Thus, αMN K channels play a critical regulatory role in motor processing and are potential therapeutic targets for diseases affecting αMN excitability and motor output, including amyotrophic lateral sclerosis.
脊髓 α 运动神经元(αMN)内在膜电导的时空平衡是运动指令最终共同途径的神经输出的基础。尽管 αMN K 通道的完整集合和精确定位及其各自的外向电导仍然没有确定,但现在已经记录了重要的 K 通道亚型,包括 Kv1、Kv2、Kv7、TASK、HCN 和 SK 同工型。独特的动力学和门控参数使这些通道能够有区别地塑造和/或改变 αMN 放电特性,并且最近对 K 通道复合物的免疫组织化学定位揭示了一个框架,其中它们的空间分布和/或在不同表面膜隔室中的局灶性聚集高度适应其生理功能。此外,高度进化的调节机制使特定通道能够在 αMN 活性的可变水平上运行,并有助于放电的状态依赖性增强或减弱。虽然最近的数据表明,在 C 形突突触后内质网-质膜连接处形成的簇状 Kv2.1 通道具有额外的非传导作用,但电生理证据表明,传导 Kv2.1 通道有效地调节 αMN 放电,特别是在高活性期间,胆碱能 C 形突被激活。强烈的 αMN 活动或细胞损伤会迅速破坏 αMN 中 Kv2.1 通道的聚集组织,并进一步影响其生理作用。因此,αMN K 通道在运动处理中发挥关键调节作用,是影响 αMN 兴奋性和运动输出的疾病的潜在治疗靶点,包括肌萎缩侧索硬化症。