Guo Chao, Dou Jian
School of Materials Science and Engineering and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China.
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
ACS Biomater Sci Eng. 2020 Nov 9;6(11):6126-6137. doi: 10.1021/acsbiomaterials.0c01325. Epub 2020 Oct 23.
Computer simulation using a degradation model is the most effective method to investigate the degradation behaviors of poly lactic acid (PLA). Various kinetic parameters are introduced into numerous degradation models to achieve the best simulation result. Nevertheless, massive possibilities of different parameter combinations limit the application of the enumeration algorithm, while the nonlinear relationship between the kinetic parameters and the degradation behaviors of PLA indicates that the ordinary parameter search algorithms cannot do well in the parameter optimization. A genetic algorithm (GA) with a small population size is proposed and utilized to optimize the kinetic parameters of the cellular automaton (CA) simulation in the present work. The optimal result indicates that the presented GA can realize the parameter optimization of the CA degradation model. The elitist tournament selection operation can speed up the optimization process. The algorithm can be executed as a single-stage algorithm alone or applied as a multistage algorithm according to various solution objects and corresponding fitness functions. Moreover, the algorithm can be hybridized with other traditional search methods such as binary search or local enumeration search to achieve a balance between accuracy and search speed.
使用降解模型进行计算机模拟是研究聚乳酸(PLA)降解行为的最有效方法。众多降解模型中引入了各种动力学参数以获得最佳模拟结果。然而,不同参数组合的大量可能性限制了枚举算法的应用,而动力学参数与PLA降解行为之间的非线性关系表明普通参数搜索算法在参数优化方面表现不佳。本文提出并利用一种小种群规模的遗传算法(GA)来优化元胞自动机(CA)模拟的动力学参数。最优结果表明所提出的GA能够实现CA降解模型的参数优化。精英锦标赛选择操作可以加快优化过程。该算法既可以单独作为单阶段算法执行,也可以根据不同的求解目标和相应的适应度函数作为多阶段算法应用。此外,该算法可以与其他传统搜索方法(如二分搜索或局部枚举搜索)相结合,以在精度和搜索速度之间取得平衡。