Chen Ke-Ji, Wu Fan, Peng Shi-Guo, Yi Wei, He Lianyi
Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China.
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
Phys Rev Lett. 2020 Dec 31;125(26):260407. doi: 10.1103/PhysRevLett.125.260407.
Spin-orbital-angular-momentum (SOAM) coupling has been realized in recent experiments of Bose-Einstein condensates [Chen et al., Phys. Rev. Lett. 121, 113204 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.113204 and Zhang et al., Phys. Rev. Lett. 122, 110402 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.110402], where the orbital angular momentum imprinted upon bosons leads to quantized vortices. For fermions, such an exotic synthetic gauge field can provide fertile ground for fascinating pairing schemes and rich superfluid phases, which are yet to be explored. Here we demonstrate how SOAM coupling stabilizes vortices in Fermi superfluids through a unique mechanism that can be viewed as the angular analog to that of the spin-orbit-coupling-induced Fulde-Ferrell state under a Fermi surface deformation. Remarkably, the vortex size is comparable with the beam waist of Raman lasers generating the SOAM coupling, which is typically much larger than previously observed vortices in Fermi superfluids. With tunable size and core structure, these giant vortex states provide unprecedented experimental access to topological defects in Fermi superfluids.
自旋轨道角动量(SOAM)耦合已在最近的玻色 - 爱因斯坦凝聚体实验中得以实现[陈等人,《物理评论快报》121, 113204 (2018);PRLTAO0031 - 900710.1103/PhysRevLett.121.113204以及张等人,《物理评论快报》122, 110402 (2019);PRLTAO0031 - 900710.1103/PhysRevLett.122.110402],其中施加在玻色子上的轨道角动量会导致量子化涡旋。对于费米子而言,这种奇异的合成规范场可为引人入胜的配对方案和丰富的超流相提供肥沃土壤,而这些尚待探索。在此,我们展示了SOAM耦合如何通过一种独特机制在费米超流体中稳定涡旋,该机制可被视为在费米面变形下自旋轨道耦合诱导的富尔德 - 费雷尔态的角向类似物。值得注意的是,涡旋尺寸与产生SOAM耦合的拉曼激光束腰相当,这通常比先前在费米超流体中观测到的涡旋大得多。凭借可调节的尺寸和核心结构,这些巨型涡旋态为研究费米超流体中的拓扑缺陷提供了前所未有的实验途径。