Bliokh Konstantin Y
Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan.
Phys Rev Lett. 2022 Nov 11;129(20):204303. doi: 10.1103/PhysRevLett.129.204303.
Motivated by recent theoretical and experimental interest in the spin and orbital angular momenta of elastic waves, we revisit canonical wave momentum, spin, and orbital angular momentum in isotropic elastic media. We show that these quantities are described by simple universal expressions, which differ from the results of Chaplain et al. [Phys. Rev. Lett. 128, 064301 (2022)PRLTAO0031-900710.1103/PhysRevLett.128.064301] and do not require separation of the longitudinal and transverse parts of the wave field. For cylindrical elastic modes, the normalized z component of the total (spin+orbital) angular momentum is quantized and equals the azimuthal quantum number of the mode, while the orbital and spin parts are not quantized due to the spin-orbit geometric-phase effects. In contrast to the claims of the above article, longitudinal, transverse, and "hybrid" contributions to the angular momenta are equally important in general and cannot be neglected. As another example, we calculate the transverse spin angular momentum of a surface Rayleigh wave.
受最近对弹性波的自旋和轨道角动量的理论和实验兴趣的推动,我们重新审视各向同性弹性介质中的正则波动动量、自旋和轨道角动量。我们表明,这些量由简单的通用表达式描述,这与查普林等人的结果不同[《物理评论快报》128, 064301 (2022)PRLTAO0031 - 900710.1103/PhysRevLett.128.064301],并且不需要分离波场的纵向和横向部分。对于圆柱弹性模式,总(自旋 + 轨道)角动量的归一化z分量是量子化的,并且等于模式的方位量子数,而由于自旋 - 轨道几何相位效应,轨道和自旋部分不是量子化的。与上述文章的主张相反,一般来说,角动量的纵向、横向和“混合”贡献同样重要,不能被忽略。作为另一个例子,我们计算表面瑞利波的横向自旋角动量。