Suret Pierre, Tikan Alexey, Bonnefoy Félicien, Copie François, Ducrozet Guillaume, Gelash Andrey, Prabhudesai Gaurav, Michel Guillaume, Cazaubiel Annette, Falcon Eric, El Gennady, Randoux Stéphane
Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59 000 Lille, France.
École Centrale de Nantes, LHEEA, UMR 6598 CNRS, F-44 321 Nantes, France.
Phys Rev Lett. 2020 Dec 31;125(26):264101. doi: 10.1103/PhysRevLett.125.264101.
Soliton gases represent large random soliton ensembles in physical systems that exhibit integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optical media, their controlled experimental realization has been missing. We report a controlled synthesis of a dense soliton gas in deep-water surface gravity waves using the tools of nonlinear spectral theory [inverse scattering transform (IST)] for the one-dimensional focusing nonlinear Schrödinger equation. The soliton gas is experimentally generated in a one-dimensional water tank where we demonstrate that we can control and measure the density of states, i.e., the probability density function parametrizing the soliton gas in the IST spectral phase space. Nonlinear spectral analysis of the generated hydrodynamic soliton gas reveals that the density of states slowly changes under the influence of perturbative higher-order effects that break the integrability of the wave dynamics.
孤子气体代表物理系统中的大型随机孤子系综,这些系统在主导阶呈现可积动力学。尽管在理论上有重大进展,且有观测证据表明孤子气体在流体和光学介质中普遍存在,但它们的可控实验实现一直缺失。我们报告了利用一维聚焦非线性薛定谔方程的非线性谱理论工具(逆散射变换,IST),在深水表面重力波中对密集孤子气体进行的可控合成。孤子气体是在一维水箱中通过实验产生的,我们在其中证明了能够控制和测量态密度,即在IST谱相空间中参数化孤子气体的概率密度函数。对所产生的流体动力学孤子气体进行的非线性谱分析表明,在破坏波动动力学可积性的微扰高阶效应影响下,态密度会缓慢变化。