Bácsi Ádám, Moca Cătălin Paşcu, Zaránd Gergely, Dóra Balázs
MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics, 1521 Budapest, Hungary.
Department of Mathematics and Computational Sciences, Széchenyi István University, 9026 Győr, Hungary.
Phys Rev Lett. 2020 Dec 31;125(26):266803. doi: 10.1103/PhysRevLett.125.266803.
We investigate the stability of a Luttinger liquid, upon suddenly coupling it to a dissipative environment. Within the Lindblad equation, the environment couples to local currents and heats the quantum liquid up to infinite temperatures. The single particle density matrix reveals the fractionalization of fermionic excitations in the spatial correlations by retaining the initial noninteger power law exponents, accompanied by an exponential decay in time with an interaction dependent rate. The spectrum of the time evolved density matrix is gapped, which collapses gradually as -ln(t). The von Neumann entropy crosses over from the early time -tln(t) behavior to ln(t) growth for late times. The early time dynamics is captured numerically by performing simulations on spinless interacting fermions, using several numerically exact methods. Our results could be tested experimentally in bosonic Luttinger liquids.
我们研究了卢廷格液体在突然耦合到耗散环境时的稳定性。在林德布拉德方程中,环境与局部电流耦合,并将量子液体加热到无限温度。单粒子密度矩阵通过保留初始非整数幂律指数,揭示了费米子激发在空间关联中的分数化,同时伴随着随相互作用依赖速率的时间指数衰减。时间演化密度矩阵的谱是有隙的,它随着-ln(t)逐渐崩塌。冯·诺依曼熵从早期的-tln(t)行为转变为后期的ln(t)增长。早期动力学通过使用几种数值精确方法对无自旋相互作用费米子进行模拟来进行数值捕捉。我们的结果可以在玻色子卢廷格液体中进行实验测试。