Suppr超能文献

用于单细胞电穿孔平台的自动基因编辑的深度学习和计算机视觉策略

Deep Learning and Computer Vision Strategies for Automated Gene Editing with a Single-Cell Electroporation Platform.

作者信息

Patino Cesar A, Mukherjee Prithvijit, Lemaitre Vincent, Pathak Nibir, Espinosa Horacio D

机构信息

Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.

iNfinitesimal LLC, Skokie, IL, USA.

出版信息

SLAS Technol. 2021 Feb;26(1):26-36. doi: 10.1177/2472630320982320. Epub 2021 Jan 15.

Abstract

Single-cell delivery platforms like microinjection and nanoprobe electroporation enable unparalleled control over cell manipulation tasks but are generally limited in throughput. Here, we present an automated single-cell electroporation system capable of automatically detecting cells with artificial intelligence (AI) software and delivering exogenous cargoes of different sizes with uniform dosage. We implemented a fully convolutional network (FCN) architecture to precisely locate the nuclei and cytosol of six cell types with various shapes and sizes, using phase contrast microscopy. Nuclear staining or reporter fluorescence was used along with phase contrast images of cells within the same field of view to facilitate the manual annotation process. Furthermore, we leveraged the near-human inference capabilities of the FCN network in detecting stained nuclei to automatically generate ground-truth labels of thousands of cells within seconds, and observed no statistically significant difference in performance compared to training with manual annotations. The average detection sensitivity and precision of the FCN network were 95±1.7% and 90±1.8%, respectively, outperforming a traditional image-processing algorithm (72±7.2% and 72±5.5%) used for comparison. To test the platform, we delivered fluorescent-labeled proteins into adhered cells and measured a delivery efficiency of 90%. As a demonstration, we used the automated single-cell electroporation platform to deliver Cas9-guide RNA (gRNA) complexes into an induced pluripotent stem cell (iPSC) line to knock out a green fluorescent protein-encoding gene in a population of ~200 cells. The results demonstrate that automated single-cell delivery is a useful cell manipulation tool for applications that demand throughput, control, and precision.

摘要

像显微注射和纳米探针电穿孔这样的单细胞递送平台能够对细胞操作任务进行无与伦比的控制,但通常通量有限。在此,我们展示了一种自动化单细胞电穿孔系统,该系统能够通过人工智能(AI)软件自动检测细胞,并以均匀剂量递送不同大小的外源物质。我们采用了全卷积网络(FCN)架构,利用相差显微镜精确地定位六种不同形状和大小的细胞类型的细胞核和细胞质。在同一视野内,将细胞核染色或报告荧光与细胞的相差图像一起使用,以促进手动注释过程。此外,我们利用FCN网络在检测染色细胞核方面近乎人类的推理能力,在几秒钟内自动生成数千个细胞的真实标签,并且与使用手动注释进行训练相比,性能上没有统计学上的显著差异。FCN网络的平均检测灵敏度和精度分别为95±1.7%和90±1.8%,优于用于比较的传统图像处理算法(72±7.2%和72±5.5%)。为了测试该平台,我们将荧光标记的蛋白质递送至贴壁细胞中,并测得递送效率为90%。作为一个演示,我们使用自动化单细胞电穿孔平台将Cas9-引导RNA(gRNA)复合物递送至诱导多能干细胞(iPSC)系中,以在约200个细胞群体中敲除绿色荧光蛋白编码基因。结果表明,自动化单细胞递送是一种适用于需要通量、控制和精度的应用的有用细胞操作工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验