Lee Minhyeok
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, Republic of Korea.
Front Bioeng Biotechnol. 2023 Jul 3;11:1226182. doi: 10.3389/fbioe.2023.1226182. eCollection 2023.
In genetic engineering, the revolutionary CRISPR-Cas system has proven to be a vital tool for precise genome editing. Simultaneously, the emergence and rapid evolution of deep learning methodologies has provided an impetus to the scientific exploration of genomic data. These concurrent advancements mandate regular investigation of the state-of-the-art, particularly given the pace of recent developments. This review focuses on the significant progress achieved during 2019-2023 in the utilization of deep learning for predicting guide RNA (gRNA) activity in the CRISPR-Cas system, a key element determining the effectiveness and specificity of genome editing procedures. In this paper, an analytical overview of contemporary research is provided, with emphasis placed on the amalgamation of artificial intelligence and genetic engineering. The importance of our review is underscored by the necessity to comprehend the rapidly evolving deep learning methodologies and their potential impact on the effectiveness of the CRISPR-Cas system. By analyzing recent literature, this review highlights the achievements and emerging trends in the integration of deep learning with the CRISPR-Cas systems, thus contributing to the future direction of this essential interdisciplinary research area.
在基因工程领域,具有革命性的CRISPR-Cas系统已被证明是精确基因组编辑的重要工具。与此同时,深度学习方法的出现和快速发展为基因组数据的科学探索提供了动力。这些同步的进展要求定期对当前的技术水平进行研究,特别是考虑到近期的发展速度。本综述聚焦于2019年至2023年期间在利用深度学习预测CRISPR-Cas系统中引导RNA(gRNA)活性方面取得的重大进展,gRNA活性是决定基因组编辑程序有效性和特异性的关键因素。本文对当代研究进行了分析概述,重点在于人工智能与基因工程的融合。理解快速发展的深度学习方法及其对CRISPR-Cas系统有效性的潜在影响的必要性凸显了我们综述的重要性。通过分析近期文献,本综述突出了深度学习与CRISPR-Cas系统整合方面的成就和新兴趋势,从而为这一重要跨学科研究领域的未来发展方向做出贡献。