Suppr超能文献

用于在光子序列比较架构中高效生物数据编码的光学模式发生器。

Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture.

机构信息

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

出版信息

PLoS One. 2021 Jan 15;16(1):e0245095. doi: 10.1371/journal.pone.0245095. eCollection 2021.

Abstract

In this study, optical technology is considered as SA issues' solution with the potential ability to increase the speed, overcome memory-limitation, reduce power consumption, and increase output accuracy. So we examine the effect of bio-data encoding and the creation of input images on the pattern-recognition error-rate at the output of optical Vander-lugt correlator. Moreover, we present a genetic algorithm-based coding approach, named as GAC, to minimize output noises of cross-correlating data. As a case study, we adopt the proposed coding approach within a correlation-based optical architecture for counting k-mers in a DNA string. As verified by the simulations on Salmonella whole-genome, we can improve sensitivity and speed more than 86% and 81%, respectively, compared to BLAST by using coding set generated by GAC method fed to the proposed optical correlator system. Moreover, we present a comprehensive report on the impact of 1D and 2D cross-correlation approaches, as-well-as various coding parameters on the output noise, which motivate the system designers to customize the coding sets within the optical setup.

摘要

在这项研究中,光学技术被认为是解决 SA 问题的一种方法,具有提高速度、克服存储限制、降低功耗和提高输出精度的潜力。因此,我们研究了生物数据编码和输入图像创建对光学 Vander-lugt 相关器输出模式识别错误率的影响。此外,我们提出了一种基于遗传算法的编码方法,称为 GAC,以最小化互相关数据的输出噪声。作为案例研究,我们在基于相关的光学架构中采用了所提出的编码方法,用于计算 DNA 字符串中的 k-mer。通过对沙门氏菌全基因组的模拟验证,与 BLAST 相比,使用 GAC 方法生成的编码集馈送到所提出的光学相关器系统中,可以将灵敏度和速度分别提高 86%和 81%以上。此外,我们还全面报告了 1D 和 2D 互相关方法以及各种编码参数对输出噪声的影响,这为系统设计人员在光学设置中定制编码集提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f2d/7810328/5dd72037f91c/pone.0245095.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验