Suppr超能文献

优化算法在重复过程自适应运动控制中的应用。

Application of optimization algorithms to adaptive motion control for repetitive process.

作者信息

Szczepanski Rafal, Tarczewski Tomasz, Grzesiak Lech M

机构信息

Department of Automatics and Measurement Systems, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland.

Institute of Control and Industrial Electronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.

出版信息

ISA Trans. 2021 Sep;115:192-205. doi: 10.1016/j.isatra.2021.01.007. Epub 2021 Jan 8.

Abstract

The application of optimization algorithms to adaptive motion control is proposed in this paper. In order to provide optimal system response, optimization algorithm is used as adjustment mechanism of controller coefficients. Most of optimization algorithms are not able to work in continuous optimization mode and with non-constant search space (i.e. dataset). For this reason, the introduction of a novel approach, Adaptive Procedure for Optimization Algorithms (APOA), that allows to apply most of optimization algorithms to adaptation process seems to be necessary. Such an algorithm is innovative, due to its universality in terms of applied optimization algorithm. Its application allows to obtain optimal motion control in modern electric drives. The proposed APOA is presented together with the novel desired-response adaptive system (DRAS) approach for repetitive processes. This solution provides unchanged system response regardless of plant parameters variation or external disturbances. The developed adaptive approach based on optimization algorithm is implemented in permanent magnet synchronous motor (PMSM) drive to adapt state feedback speed controller during moment of inertia variations. Since the proposed DRAS is model-free approach, the adaptation procedure is immune to issues related to plant parameters mismatch. The obtained results prove that proposed adaptive speed controller for PMSM assures desired system response regardless of the moment of inertia variation.

摘要

本文提出了将优化算法应用于自适应运动控制。为了提供最优的系统响应,优化算法被用作控制器系数的调整机制。大多数优化算法无法在连续优化模式和非恒定搜索空间(即数据集)中工作。因此,引入一种新颖的方法——优化算法自适应过程(APOA)似乎是必要的,该方法允许将大多数优化算法应用于自适应过程。这样一种算法具有创新性,因为它在应用的优化算法方面具有通用性。其应用能够在现代电力驱动中获得最优的运动控制。所提出的APOA与用于重复过程的新型期望响应自适应系统(DRAS)方法一起呈现。该解决方案无论工厂参数变化或外部干扰如何,都能提供不变的系统响应。基于优化算法开发的自适应方法在永磁同步电机(PMSM)驱动中实现,以便在转动惯量变化时自适应状态反馈速度控制器。由于所提出的DRAS是一种无模型方法,自适应过程不受与工厂参数不匹配相关问题的影响。所获得的结果证明,所提出的PMSM自适应速度控制器无论转动惯量如何变化,都能确保期望的系统响应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验