Suppr超能文献

相似文献

3
An assessment of serial co-cultivation approach for generating novel Zymomonas mobilis strains.
BMC Res Notes. 2020 Sep 7;13(1):422. doi: 10.1186/s13104-020-05261-5.
5
Genome Copy Number Quantification Revealed That the Ethanologenic Alpha-Proteobacterium Is Polyploid.
Front Microbiol. 2021 Aug 2;12:705895. doi: 10.3389/fmicb.2021.705895. eCollection 2021.
6
Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis.
Biotechnol Bioeng. 2011 Mar;108(3):655-65. doi: 10.1002/bit.22965. Epub 2010 Nov 10.
8
Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production.
World J Microbiol Biotechnol. 2020 Jul 13;36(8):112. doi: 10.1007/s11274-020-02885-4.
9
Discovery of ethanol-responsive small RNAs in Zymomonas mobilis.
Appl Environ Microbiol. 2014 Jul;80(14):4189-98. doi: 10.1128/AEM.00429-14. Epub 2014 May 2.
10
Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution.
Bioresour Technol. 2021 Jun;329:124926. doi: 10.1016/j.biortech.2021.124926. Epub 2021 Mar 2.

引用本文的文献

2
A new Zymomonas mobilis platform strain for the efficient production of chemicals.
Microb Cell Fact. 2024 May 22;23(1):143. doi: 10.1186/s12934-024-02419-9.
3
Genome Copy Number Quantification Revealed That the Ethanologenic Alpha-Proteobacterium Is Polyploid.
Front Microbiol. 2021 Aug 2;12:705895. doi: 10.3389/fmicb.2021.705895. eCollection 2021.

本文引用的文献

1
Unification of cell division control strategies through continuous rate models.
Phys Rev E. 2020 Feb;101(2-1):022401. doi: 10.1103/PhysRevE.101.022401.
2
Improvement of Acetaldehyde Production in by Engineering of Its Aerobic Metabolism.
Front Microbiol. 2019 Nov 14;10:2533. doi: 10.3389/fmicb.2019.02533. eCollection 2019.
3
Metabolic Engineering of Bacterial Respiration: High vs. Low P/O and the Case of .
Front Bioeng Biotechnol. 2019 Nov 12;7:327. doi: 10.3389/fbioe.2019.00327. eCollection 2019.
4
Distinct functional roles for hopanoid composition in the chemical tolerance of Zymomonas mobilis.
Mol Microbiol. 2019 Nov;112(5):1564-1575. doi: 10.1111/mmi.14380. Epub 2019 Sep 17.
5
Nucleoid Size Scaling and Intracellular Organization of Translation across Bacteria.
Cell. 2019 May 30;177(6):1632-1648.e20. doi: 10.1016/j.cell.2019.05.017.
6
Mechanistic Origin of Cell-Size Control and Homeostasis in Bacteria.
Curr Biol. 2019 Jun 3;29(11):1760-1770.e7. doi: 10.1016/j.cub.2019.04.062. Epub 2019 May 16.
8
Cell Aggregation and Aerobic Respiration Are Important for ZM4 Survival in an Aerobic Minimal Medium.
Appl Environ Microbiol. 2019 May 2;85(10). doi: 10.1128/AEM.00193-19. Print 2019 May 15.
10
Cell cycle-dependent regulation of FtsZ in Escherichia coli in slow growth conditions.
Mol Microbiol. 2018 Dec;110(6):1030-1044. doi: 10.1111/mmi.14135. Epub 2018 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验