文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

贝叶斯情境恐惧条件反射模型(BaconX)中的灭绝和歧视。

Extinction and discrimination in a Bayesian model of context fear conditioning (BaconX).

机构信息

Department of Psychology and Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.

Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.

出版信息

Hippocampus. 2021 Jul;31(7):790-814. doi: 10.1002/hipo.23298. Epub 2021 Jan 16.


DOI:10.1002/hipo.23298
PMID:33452843
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8359206/
Abstract

The extinction of contextual fear is commonly an essential requirement for successful exposure therapy for fear disorders. However, experimental work on extinction of contextual fear is limited, and there little or no directly relevant theoretical work. Here, we extend BACON, a neurocomputational model of context fear conditioning that provides plausible explanations for a number of aspects of context fear conditioning, to deal with extinction (calling the model BaconX). In this model, contextual representations are formed in the hippocampus and association of fear to them occurs in the amygdala. Representation creation, conditionability, and development of between-session extinction are controlled by degree of confidence (assessed by the Bayesian weight of evidence) that an active contextual representation is in fact that of the current context (i.e., is "valid"). The model predicts that: (1) extinction which persists between sessions will occur only if at a sessions end there is high confidence that the active representation is valid. It follows that the shorter the context placement-to-US (shock) interval ("PSI") and the less is therefore learned about context, the longer extinction sessions must be for enduring extinction to occur, while too short PSIs will preclude successful extinction. (2) Short-PSI deficits can be rescued by contextual exposure even after conditioning has occurred. (3) Learning to discriminate well between a conditioned and similar safe context requires representations of each to form, which may not occur if PSI was too short. (4) Extinction-causing inhibition must be applied downstream of the conditioning locus for reasonable generalization properties to be generated. (5) Context change tends to cause return of extinguished contextual fear. (6). Extinction carried out in the conditioning context generalizes better than extinction executed in contexts to which fear has generalized (as done in exposure therapy). (7) BaconX suggests novel approaches to exposure therapy.

摘要

情境恐惧的消除通常是恐惧障碍暴露疗法成功的必要条件。然而,情境恐惧的实验研究工作有限,并且几乎没有直接相关的理论工作。在这里,我们扩展了 BACON,这是一个神经计算模型,用于情境恐惧条件作用,为情境恐惧条件作用的许多方面提供了合理的解释,以处理消退(称该模型为 BaconX)。在这个模型中,情境表示是在海马体中形成的,而恐惧与它们的关联则发生在杏仁核中。表示的创建、可条件性和会话间消退的发展由对当前情境的活跃情境表示实际上是有效的(即“有效”)的置信度(由贝叶斯证据权重评估)来控制。该模型预测:(1)只有在会话结束时高度确信活跃的表示实际上是当前情境的表示,才会发生持久的会话间消退。因此,上下文放置到 US(电击)的间隔(PSI)越短,因此对上下文的了解越少,就必须进行更长的消退会话才能发生持久的消退,而太短的 PSI 将排除成功的消退。(2)即使在条件作用发生之后,通过上下文暴露也可以挽救短 PSI 缺陷。(3)要很好地学习区分条件和相似的安全上下文,需要形成每个上下文的表示,如果 PSI 太短,则可能不会形成。(4)用于生成合理的泛化属性的抑制作用必须在条件作用位置的下游应用。(5)上下文变化往往会导致已消除的情境恐惧的回归。(6).在条件作用环境中进行的消退比在恐惧已经泛化的环境中进行的消退更好地泛化(如在暴露疗法中所做的那样)。(7)BaconX 为暴露疗法提供了新的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/b7b7282eaad8/HIPO-31-790-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/e2daa3a4f97d/HIPO-31-790-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/e47730c06ad0/HIPO-31-790-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/43b7f9be579e/HIPO-31-790-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/1be95c1d0560/HIPO-31-790-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/34fa8edcbe50/HIPO-31-790-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/ee2b32f03b8c/HIPO-31-790-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/062fdf5b627c/HIPO-31-790-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/e71550d2592f/HIPO-31-790-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/9dc7e5e82b44/HIPO-31-790-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/6469ab04b836/HIPO-31-790-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/d00a06426e24/HIPO-31-790-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/542a70a54f20/HIPO-31-790-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/171a207dbcd2/HIPO-31-790-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/950fe5ed9ee3/HIPO-31-790-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/b7b7282eaad8/HIPO-31-790-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/e2daa3a4f97d/HIPO-31-790-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/e47730c06ad0/HIPO-31-790-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/43b7f9be579e/HIPO-31-790-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/1be95c1d0560/HIPO-31-790-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/34fa8edcbe50/HIPO-31-790-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/ee2b32f03b8c/HIPO-31-790-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/062fdf5b627c/HIPO-31-790-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/e71550d2592f/HIPO-31-790-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/9dc7e5e82b44/HIPO-31-790-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/6469ab04b836/HIPO-31-790-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/d00a06426e24/HIPO-31-790-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/542a70a54f20/HIPO-31-790-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/171a207dbcd2/HIPO-31-790-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/950fe5ed9ee3/HIPO-31-790-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/835e/8359206/b7b7282eaad8/HIPO-31-790-g011.jpg

相似文献

[1]
Extinction and discrimination in a Bayesian model of context fear conditioning (BaconX).

Hippocampus. 2021-7

[2]
Some key parameters in contextual fear conditioning and extinction in adult rats.

Behav Brain Res. 2024-3-28

[3]
When gut feelings teach the brain to fear pain: Context-dependent activation of the central fear network in a novel interoceptive conditioning paradigm.

Neuroimage. 2021-9

[4]
Entorhinal cortex contribution to contextual fear conditioning extinction and reconsolidation in rats.

Neurobiol Learn Mem. 2014-4

[5]
A behavioral analysis of the impact of voluntary physical activity on hippocampus-dependent contextual conditioning.

Hippocampus. 2009-10

[6]
A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals.

Brain Cogn. 2012-11-17

[7]
Medial prefrontal pathways for the contextual regulation of extinguished fear in humans.

Neuroimage. 2015-11-15

[8]
Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal.

J Neurosci. 2014-10-1

[9]
Long-term expression of human contextual fear and extinction memories involves amygdala, hippocampus and ventromedial prefrontal cortex: a reinstatement study in two independent samples.

Soc Cogn Affect Neurosci. 2014-12

[10]
Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction.

J Neurosci. 2001-3-1

引用本文的文献

[1]
Neural Representation of Associative Threat Learning in Pulvinar Divisions, Lateral Geniculate Nucleus, and Mediodorsal Thalamus in Humans.

bioRxiv. 2025-7-14

[2]
A neurally constrained computational model of context-dependent fear extinction recall and relapse.

Commun Biol. 2025-4-26

[3]
Remote memory in a Bayesian model of context fear conditioning (BaconREM).

Front Behav Neurosci. 2024-3-7

[4]
Sex differences in contextual fear learning and generalization: a behavioral and computational analysis of hippocampal functioning.

Learn Mem. 2022-9

[5]
Sexually dimorphic muscarinic acetylcholine receptor modulation of contextual fear learning in the dentate gyrus.

Neurobiol Learn Mem. 2021-11

本文引用的文献

[1]
Maladaptive Properties of Context-Impoverished Memories.

Curr Biol. 2020-6-22

[2]
Left Prefrontal Cortex Supports the Recognition of Meaningful Patterns in Ambiguous Stimuli.

Front Neurosci. 2020-2-21

[3]
Cholinergic Modulation of Exposure Disrupts Hippocampal Processes and Augments Extinction: Proof-of-Concept Study With Social Anxiety Disorder.

Biol Psychiatry. 2019-4-19

[4]
Retrosplenial cortex damage produces retrograde and anterograde context amnesia using strong fear conditioning procedures.

Behav Brain Res. 2019-4-27

[5]
Distinct hippocampal engrams control extinction and relapse of fear memory.

Nat Neurosci. 2019-4-1

[6]
The conditions that regulate formation of a false fear memory in rats.

Neurobiol Learn Mem. 2018-12

[7]
Human VMPFC encodes early signatures of confidence in perceptual decisions.

Elife. 2018-9-24

[8]
Distinct encoding of decision confidence in human medial prefrontal cortex.

Proc Natl Acad Sci U S A. 2018-5-21

[9]
The neural system of metacognition accompanying decision-making in the prefrontal cortex.

PLoS Biol. 2018-4-23

[10]
Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear.

Nat Neurosci. 2018-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索