Suppr超能文献

动物恐惧条件反射和消退中杏仁核-海马-前额叶相互作用的模型。

A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals.

机构信息

School of Social Sciences and Psychology, Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, NSW, Australia.

出版信息

Brain Cogn. 2013 Feb;81(1):29-43. doi: 10.1016/j.bandc.2012.10.005. Epub 2012 Nov 17.

Abstract

Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning.

摘要

实证研究表明,杏仁核、海马体和腹内侧前额叶皮层(vmPFC)参与了恐惧条件反射。然而,每个脑区的功能贡献及其相互作用的性质尚不清楚。在这里,我们将海马体在经典条件反射中的功能作用的现有神经网络模型扩展到包括与杏仁核和前额叶皮层的相互作用。我们将该模型应用于恐惧条件反射,在这种条件反射中,动物对与高度厌恶事件(例如电击)相关联的刺激产生生理(例如心率)和行为(例如冻结)反应。我们模型的关键特征是,杏仁核中央核中这些条件反应的学习受到两个独立过程的调节,一个来自基底外侧杏仁核,指示正预测误差,另一个来自 vmPFC,通过杏仁核的中间细胞,指示负预测误差。此外,我们提出,海马体对 vmPFC 和基底外侧杏仁核的输入对于恐惧获得和消退的上下文调节是必不可少的。该模型足以解释来自各种动物恐惧条件反射范式的大量数据,包括获得、消退、再获得和上下文特异性效应。与损伤动物的研究一致,我们的模型表明,vmPFC 的损伤会损害消退,而海马体的损伤会在不同的环境中损害消退(例如,与动物实验中初始训练中使用的不同环境)。我们还讨论了模型的局限性和预测,包括训练次数对恐惧条件反射的影响。

相似文献

1
A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals.
Brain Cogn. 2013 Feb;81(1):29-43. doi: 10.1016/j.bandc.2012.10.005. Epub 2012 Nov 17.
2
Medial prefrontal pathways for the contextual regulation of extinguished fear in humans.
Neuroimage. 2015 Nov 15;122:262-71. doi: 10.1016/j.neuroimage.2015.07.051. Epub 2015 Jul 26.
3
4
Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction.
PLoS One. 2013 Oct 24;8(10):e77707. doi: 10.1371/journal.pone.0077707. eCollection 2013.
5
Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network.
J Neurosci. 2006 Sep 13;26(37):9503-11. doi: 10.1523/JNEUROSCI.2021-06.2006.
7
Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex.
Eur J Neurosci. 2009 Feb;29(4):823-32. doi: 10.1111/j.1460-9568.2009.06624.x. Epub 2008 Feb 6.
9
Synaptic Targeting of Double-Projecting Ventral CA1 Hippocampal Neurons to the Medial Prefrontal Cortex and Basal Amygdala.
J Neurosci. 2017 May 10;37(19):4868-4882. doi: 10.1523/JNEUROSCI.3579-16.2017. Epub 2017 Apr 6.
10
Learning-induced changes in mPFC-BLA connections after fear conditioning, extinction, and reinstatement of fear.
Neuropsychopharmacology. 2011 Oct;36(11):2276-85. doi: 10.1038/npp.2011.115. Epub 2011 Jul 13.

引用本文的文献

1
2
Mechanisms of alcohol influence on fear conditioning: A computational model.
Alcohol Clin Exp Res (Hoboken). 2025 Jun;49(6):1233-1247. doi: 10.1111/acer.70071. Epub 2025 May 19.
4
Computational modeling of fear and stress responses: validation using consolidated fear and stress protocols.
Front Syst Neurosci. 2024 Dec 24;18:1454336. doi: 10.3389/fnsys.2024.1454336. eCollection 2024.
5
Effects of repetitive transcranial magnetic stimulation on fear of cancer recurrence and its underlying neuromechanism.
Contemp Clin Trials Commun. 2024 Apr 23;39:101299. doi: 10.1016/j.conctc.2024.101299. eCollection 2024 Jun.
7
Mechanisms of alcohol influence on fear conditioning: a computational model.
bioRxiv. 2024 Jan 1:2023.12.30.573310. doi: 10.1101/2023.12.30.573310.
8
The sexually divergent cFos activation map of fear extinction.
Heliyon. 2023 Dec 19;10(1):e23748. doi: 10.1016/j.heliyon.2023.e23748. eCollection 2024 Jan 15.
9
Fear Extinction Learning in Posttraumatic Stress Disorder.
Curr Top Behav Neurosci. 2023;64:257-270. doi: 10.1007/7854_2023_436.

本文引用的文献

1
Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: a computational model.
Brain Res. 2013 Feb 1;1493:48-67. doi: 10.1016/j.brainres.2012.11.020. Epub 2012 Nov 23.
2
3
Revealing context-specific conditioned fear memories with full immersion virtual reality.
Front Behav Neurosci. 2011 Nov 7;5:75. doi: 10.3389/fnbeh.2011.00075. eCollection 2011.
5
Design of a neurally plausible model of fear learning.
Front Behav Neurosci. 2011 Jul 26;5:41. doi: 10.3389/fnbeh.2011.00041. eCollection 2011.
6
Effects of rapid eye movement sleep deprivation on fear extinction recall and prediction error signaling.
Hum Brain Mapp. 2012 Oct;33(10):2362-76. doi: 10.1002/hbm.21369. Epub 2011 Aug 8.
7
Temporal factors control hippocampal contributions to fear renewal after extinction.
Hippocampus. 2012 May;22(5):1096-106. doi: 10.1002/hipo.20954. Epub 2011 May 26.
8
Placing prediction into the fear circuit.
Trends Neurosci. 2011 Jun;34(6):283-92. doi: 10.1016/j.tins.2011.03.005. Epub 2011 May 5.
9
Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons.
J Neurophysiol. 2011 Jun;105(6):3054-66. doi: 10.1152/jn.00136.2011. Epub 2011 Apr 6.
10
Context-dependent encoding of fear and extinction memories in a large-scale network model of the basal amygdala.
PLoS Comput Biol. 2011 Mar;7(3):e1001104. doi: 10.1371/journal.pcbi.1001104. Epub 2011 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验