Ma Mingming, Dai Chaoqi, Luo Kailin, Li Shun, Chen Jiahe, Li Zhendong, Ren Xiaodi, Wang Deyu, He Haiyong, Dai Mingzhi, Peng Zhe
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, P. R. China.
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Chemphyschem. 2021 May 17;22(10):1027-1033. doi: 10.1002/cphc.202000897. Epub 2021 Apr 28.
Uneven lithium (Li) electrodeposition hinders the wide application of high-energy-density Li metal batteries (LMBs). Current efforts mainly focus on the side-reaction suppression between Li and electrolyte, neglecting the determinant factor of mass transport in affecting Li deposition. Herein, guided Li mass transport under the action of a local electric field near magnetic nanoparticles or structures at the Li metal interface, known as the magnetohydrodynamic (MHD) effect, are proposed to promote uniform Li deposition. The modified Li trajectories are revealed by COMSOL Multiphysics simulations, and verified by the compact and disc-like Li depositions on a model Fe O substrate. Furthermore, a patterned mesh with the magnetic Fe-Cr O core-shell skeleton is used as a facile and efficient protective structure for Li metal anodes, enabling Li metal batteries to achieve a Coulombic efficiency of 99.5 % over 300 cycles at a high cathode loading of 5.0 mAh cm . The Li protection strategy based on the MHD interface design might open a new opportunity to develop high-energy-density LMBs.
不均匀的锂(Li)电沉积阻碍了高能量密度锂金属电池(LMBs)的广泛应用。目前的努力主要集中在抑制Li与电解质之间的副反应,而忽略了质量传输在影响Li沉积方面的决定性因素。在此,提出了在锂金属界面附近的磁性纳米颗粒或结构的局部电场作用下引导Li质量传输,即磁流体动力学(MHD)效应,以促进均匀的Li沉积。通过COMSOL Multiphysics模拟揭示了改性的Li轨迹,并通过在模型Fe O基板上致密且盘状的Li沉积进行了验证。此外,具有磁性Fe-Cr O核壳骨架的图案化网格被用作锂金属负极的简便高效的保护结构,使锂金属电池在5.0 mAh cm的高阴极负载下经过300次循环后库仑效率达到99.5%。基于MHD界面设计的Li保护策略可能为开发高能量密度的LMBs开辟新的机会。