Suppr超能文献

低成本和开源的化学分离策略。

Low-cost and open-source strategies for chemical separations.

机构信息

Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.

Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.

出版信息

J Chromatogr A. 2021 Feb 8;1638:461820. doi: 10.1016/j.chroma.2020.461820. Epub 2020 Dec 24.

Abstract

In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.

摘要

近年来,利用开放获取资源进行实验室研究的趋势已经开始。科学硬件的开源设计策略依赖于广泛可用的部件的使用,特别是那些可以使用添加剂制造技术直接打印的部件和可以连接到低成本微控制器的电子元件。开源软件消除了对昂贵商业许可证的需求,并提供了为特定需求设计程序的机会。在这篇综述中,描述了“开源运动”在化学分离领域的影响,主要是通过全面回顾过去五年在该领域的研究。涵盖的主题包括一般实验室设备、样品制备技术、基于分离的分析、检测策略、电子系统控制以及数据处理软件。还讨论了在这些与分离相关的主题背景下,进一步采用开源方法的剩余障碍和可能的机会。

相似文献

1
Low-cost and open-source strategies for chemical separations.
J Chromatogr A. 2021 Feb 8;1638:461820. doi: 10.1016/j.chroma.2020.461820. Epub 2020 Dec 24.
2
A low-cost, open-source digital stripchart recorder for chromatographic detectors using a Raspberry Pi.
J Chromatogr A. 2019 Oct 11;1603:396-400. doi: 10.1016/j.chroma.2019.03.070. Epub 2019 Apr 1.
3
Open-Source 3-D Platform for Low-Cost Scientific Instrument Ecosystem.
J Lab Autom. 2016 Aug;21(4):517-25. doi: 10.1177/2211068215624406. Epub 2016 Jan 13.
4
Open-source micro-tensile testers via additive manufacturing for the mechanical characterization of thin films and papers.
PLoS One. 2018 May 29;13(5):e0197999. doi: 10.1371/journal.pone.0197999. eCollection 2018.
5
Open-source 3D-printable optics equipment.
PLoS One. 2013;8(3):e59840. doi: 10.1371/journal.pone.0059840. Epub 2013 Mar 27.
6
"Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment.
PLoS One. 2018 Mar 6;13(3):e0193744. doi: 10.1371/journal.pone.0193744. eCollection 2018.
8
Benefits and limitations of three-dimensional printing technology for ecological research.
BMC Ecol. 2018 Sep 10;18(1):32. doi: 10.1186/s12898-018-0190-z.
9
Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering.
PLoS One. 2017 Nov 15;12(11):e0187163. doi: 10.1371/journal.pone.0187163. eCollection 2017.
10
How 3D printing can boost advances in analytical and bioanalytical chemistry.
Mikrochim Acta. 2021 Jul 21;188(8):265. doi: 10.1007/s00604-021-04901-2.

引用本文的文献

1
Photopolymer Flexographic Printing Plate Mold for PDMS Microfluidic Manufacture.
Polymers (Basel). 2025 Jun 20;17(13):1723. doi: 10.3390/polym17131723.
2
Spin coating on a budget: A 3D-Printed all-mechanical alternative for cost-effective thin-film deposition.
HardwareX. 2024 Jun 25;19:e00547. doi: 10.1016/j.ohx.2024.e00547. eCollection 2024 Sep.
3
An open-source smart fraction collector for isocratic preparative liquid chromatography.
HardwareX. 2023 Aug 4;15:e00462. doi: 10.1016/j.ohx.2023.e00462. eCollection 2023 Sep.
4
2LabsToGo─Recipe for Building Your Own Chromatography Equipment Including Biological Assay and Effect Detection.
Anal Chem. 2022 Oct 25;94(42):14554-14564. doi: 10.1021/acs.analchem.2c02339. Epub 2022 Oct 12.
5
Development of an Automatable Affinity Purification Process for DNA-Encoded Chemistry.
ACS Omega. 2022 Aug 2;7(32):28369-28377. doi: 10.1021/acsomega.2c02906. eCollection 2022 Aug 16.
6
Capillary Electrophoresis as a Monitoring Tool for Flow Composition Determination.
Molecules. 2021 Aug 13;26(16):4918. doi: 10.3390/molecules26164918.

本文引用的文献

1
3D printing of glass by additive manufacturing techniques: a review.
Front Optoelectron. 2021 Sep;14(3):263-277. doi: 10.1007/s12200-020-1009-z. Epub 2020 Jul 10.
2
Rapid Additive Manufacturing of 3D Geometric Structures via Dual-Wavelength Polymerization.
ACS Macro Lett. 2020 Oct 20;9(10):1409-1414. doi: 10.1021/acsmacrolett.0c00465. Epub 2020 Sep 8.
3
Open-source autosampler for elemental and isotopic analyses of solids.
HardwareX. 2020 Jul 10;8:e00123. doi: 10.1016/j.ohx.2020.e00123. eCollection 2020 Oct.
4
openPFGE: An open source and low cost pulsed-field gel electrophoresis equipment.
HardwareX. 2020 Aug 2;8:e00128. doi: 10.1016/j.ohx.2020.e00128. eCollection 2020 Oct.
5
A Rubik's microfluidic cube.
Microsyst Nanoeng. 2020 Jun 15;6:27. doi: 10.1038/s41378-020-0136-4. eCollection 2020.
6
Sticker Microfluidics: A Method for Fabrication of Customized Monolithic Microfluidics.
ACS Biomater Sci Eng. 2019 Dec 9;5(12):6801-6810. doi: 10.1021/acsbiomaterials.9b00953. Epub 2019 Oct 1.
7
An electrophoretic ion analyzer for on-site autonomous water monitoring.
J Chromatogr A. 2021 Jan 25;1637:461791. doi: 10.1016/j.chroma.2020.461791. Epub 2020 Dec 8.
8
In-situ gradient formation by direct solid addition of buffer components.
J Chromatogr A. 2020 Dec 20;1634:461663. doi: 10.1016/j.chroma.2020.461663. Epub 2020 Oct 29.
10
Capacitively coupled contactless conductivity detection for analytical techniques - Developments from 2018 to 2020.
J Chromatogr A. 2020 Nov 22;1632:461616. doi: 10.1016/j.chroma.2020.461616. Epub 2020 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验