Suppr超能文献

水力流向改变电解辅助人工湿地中营养物质去除性能和微生物机制。

Hydraulic flow direction alters nutrients removal performance and microbial mechanisms in electrolysis-assisted constructed wetlands.

机构信息

College of Civil Engineering, Fuzhou University, Fujian 350116, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.

出版信息

Bioresour Technol. 2021 Apr;325:124692. doi: 10.1016/j.biortech.2021.124692. Epub 2021 Jan 11.

Abstract

In this study, an electrolysis-assisted down-flow constructed wetland (E-DFCW) was successfully established, and achieved simultaneously efficient removal of PO-P (93.6% ± 3.2%), NO-N (97.1% ± 2.0%) and TN (80.6% ± 5.4%). When compared with electrolysis-assisted up-flow constructed wetland (E-UFCW), E-DFCW allowed significantly lower concentrations of PO-P, NO-N, total Fe and SO-S in effluents. In addition, microbial community and functional genes prediction results indicated that hydraulic flow direction significantly altered microbial nitrogen, sulfur and carbon metabolisms in electrolysis-assisted constructed wetlands (E-CWs). Specifically, multi-path denitrification facilitated NO-N reduction in cathodic chamber of E-DFCW, whereas autohydrogenotrophic denitrification might dominate NO-N reduction in cathodic chamber of E-UFCW. More abundant and diverse denitrifiers in cathodic chamber of E-DFCW contributed to enhanced denitrification performance. Overall, this work provides microbial insights into multi-path nitrogen metabolisms in electrolysis-assisted denitrification systems in response to hydraulic flow direction.

摘要

在这项研究中,成功建立了一种电解辅助下向流人工湿地(E-DFCW),同时实现了 PO-P(93.6%±3.2%)、NO-N(97.1%±2.0%)和 TN(80.6%±5.4%)的高效去除。与电解辅助上向流人工湿地(E-UFCW)相比,E-DFCW 允许废水中 PO-P、NO-N、总铁和 SO-S 的浓度显著降低。此外,微生物群落和功能基因预测结果表明,水力流动方向显著改变了电解辅助人工湿地(E-CWs)中的微生物氮、硫和碳代谢。具体来说,多路径反硝化促进了 E-DFCW 阴极室中 NO-N 的还原,而自养氢营养反硝化可能主导 E-UFCW 阴极室中 NO-N 的还原。E-DFCW 阴极室内更丰富和多样化的反硝化菌有助于提高反硝化性能。总的来说,这项工作为微生物在水力流动方向响应下的电解辅助反硝化系统中的多路径氮代谢提供了深入了解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验