Suppr超能文献

理解脑内的水相和非水相质子 T 弛豫。

Understanding aqueous and non-aqueous proton T relaxation in brain.

机构信息

Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada.

Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; Department of Radiology, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.

出版信息

J Magn Reson. 2021 Feb;323:106909. doi: 10.1016/j.jmr.2020.106909. Epub 2021 Jan 5.

Abstract

A full picture of longitudinal relaxation in complex heterogeneous environments like white matter brain tissue remains elusive. In tissue, successive approximations, from the solvation layer model to the two pool model, have highlighted how longitudinal magnetization evolution depends on both inter-compartmental exchange and spin-lattice relaxation. In white matter, however, these models fail to capture the behaviour of the two distinct aqueous pools, myelin water and intra/extra-cellular water. A challenge with testing more comprehensive multi-pool models lies in directly observing all pools, both aqueous and non-aqueous. In this work, we advance these efforts by integrating three main experimental and analytical elements: direct observation of the longitudinal relaxation of both the aqueous and the non-aqueous protons in white matter, a wide range of different initial conditions, and application of an analysis pipeline which includes lineshape, CPMG, and fitting of a four pool model. An eigenvector interpretation of the four pool model highlights how longitudinal relaxation in white matter depends on initial conditions. We find that a single set of model parameters is able to describe the entire range of relaxation behaviour observed in all the separable aqueous and non-aqueous pools in experiments involving six different initial conditions. Understanding of the nature and connectedness of the tissue components is crucial in the design and interpretation of many MRI measurements, especially those based on magnetization transfer and longitudinal relaxation. In particular, the dependency of relaxation behaviour on initial conditions is likely the basis for understanding method-dependent discrepancies in in vivo T.

摘要

在像脑白质这样的复杂非均相环境中,完整的纵向弛豫图像仍然难以捉摸。在组织中,从溶剂化层模型到双池模型的连续逼近,突出了纵向磁化强度的演化如何取决于隔室间交换和自旋晶格弛豫。然而,在白质中,这些模型无法捕捉到两个不同的水相,即髓磷脂水和细胞内/细胞外水的行为。测试更全面的多池模型的一个挑战在于直接观察所有的水相和非水相池。在这项工作中,我们通过整合三个主要的实验和分析元素来推进这些努力:直接观察白质中所有质子的纵向弛豫,包括水相和非水相;广泛的不同初始条件;以及应用包括线宽、CPMG 和拟合四池模型的分析管道。四池模型的特征向量解释突出了纵向弛豫在白质中如何取决于初始条件。我们发现,一组模型参数能够描述在涉及六种不同初始条件的所有可分离的水相和非水相池的所有实验中观察到的整个弛豫行为范围。在设计和解释许多 MRI 测量中,尤其是基于磁化转移和纵向弛豫的测量中,了解组织成分的性质和关联性至关重要。特别是,弛豫行为对初始条件的依赖性可能是理解体内 T 依赖差异的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验