Suppr超能文献

磁化传递解释了MRI文献中大部分的T变异性。

Magnetization transfer explains most of the T variability in the MRI literature.

作者信息

Assländer Jakob, Flassbeck Sebastian

机构信息

Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY.

Center for Advanced Imaging Innovation and Research, Department of Radiology, NYU School of Medicine, New York, NY, USA.

出版信息

Magn Reson Med. 2025 Jul;94(1):293-301. doi: 10.1002/mrm.30451. Epub 2025 Mar 17.

Abstract

PURPOSE

To identify the predominant source of the variability described in the literature, which ranges from 0.6-1.1 s for brain white matter at 3 T.

METHODS

25 -mapping methods from the literature were simulated with a mono-exponential and various magnetization-transfer (MT) models, each followed by mono-exponential fitting. A single set of model parameters was assumed for the simulation of all methods, and these parameters were estimated by fitting the simulation-based to the corresponding literature values of white matter at 3 T. We acquired in vivo data with a quantitative magnetization transfer and three -mapping techniques. The former was used to synthesize MR images that correspond to the three -mapping methods. A mono-exponential model was fitted to the experimental and corresponding synthesized MR images.

RESULTS

Mono-exponential simulations suggest good inter-method reproducibility and fail to explain the highly variable estimates in the literature. In contrast, MT simulations suggest that a mono-exponential fit results in a variable and explain up to 62% of the literature's variability. In our own in vivo experiments, MT explains 70% of the observed variability.

CONCLUSION

The results suggest that a mono-exponential model does not adequately describe longitudinal relaxation in biological tissue. Therefore, in biological tissue should be considered only a semi-quantitative metric that is inherently contingent upon the imaging methodology, and comparisons between different -mapping methods and the use of simplistic spin systems-such as doped-water phantoms-for validation should be viewed with caution.

摘要

目的

确定文献中描述的变异性的主要来源,在3T时脑白质的变异性范围为0.6 - 1.1秒。

方法

用单指数模型和各种磁化传递(MT)模型模拟了文献中的25种映射方法,每种方法之后进行单指数拟合。假设所有方法的模拟都使用一组单一的模型参数,这些参数通过将基于模拟的数据拟合到3T时白质的相应文献值来估计。我们使用定量磁化传递和三种映射技术获取了体内数据。前者用于合成与三种映射方法对应的磁共振图像。对实验和相应的合成磁共振图像拟合单指数模型。

结果

单指数模拟表明方法间具有良好的可重复性,但无法解释文献中高度可变的估计值。相比之下,MT模拟表明单指数拟合会导致可变的估计值,并能解释高达62%的文献变异性。在我们自己的体内实验中,MT解释了70%的观察到的变异性。

结论

结果表明单指数模型不能充分描述生物组织中的纵向弛豫。因此,在生物组织中,应仅将其视为一种半定量指标,其本质上取决于成像方法,并且在比较不同的映射方法以及使用简单的自旋系统(如掺杂水模体)进行验证时应谨慎看待。

相似文献

3
T and T quantification from standard turbo spin echo images.从标准的涡轮自旋回波图像中进行 T 和 T 定量。
Magn Reson Med. 2019 Mar;81(3):2052-2063. doi: 10.1002/mrm.27495. Epub 2018 Oct 19.
4
Effects of magnetization transfer on T1 contrast in human brain white matter.磁化传递对人脑白质T1对比度的影响。
Neuroimage. 2016 Mar;128:85-95. doi: 10.1016/j.neuroimage.2015.12.032. Epub 2015 Dec 24.

本文引用的文献

1
Cramér-Rao Bound Optimized Subspace Reconstruction in Quantitative MRI.定量磁共振成像中克拉美罗界优化的子空间重建
IEEE Trans Biomed Eng. 2025 Jan;72(1):217-226. doi: 10.1109/TBME.2024.3446763. Epub 2025 Jan 15.
7
Generalized Bloch model: A theory for pulsed magnetization transfer.广义 Bloch 模型:脉冲磁化转移理论。
Magn Reson Med. 2022 Apr;87(4):2003-2017. doi: 10.1002/mrm.29071. Epub 2021 Nov 23.
8
Understanding aqueous and non-aqueous proton T relaxation in brain.理解脑内的水相和非水相质子 T 弛豫。
J Magn Reson. 2021 Feb;323:106909. doi: 10.1016/j.jmr.2020.106909. Epub 2021 Jan 5.
9
Magnetization transfer in magnetic resonance fingerprinting.磁共振指纹识别中的磁化传递
Magn Reson Med. 2020 Jul;84(1):128-141. doi: 10.1002/mrm.28096. Epub 2019 Nov 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验