Suppr超能文献

胆固醇的漫漫合成之路:翻译后调控

Post-translational control of the long and winding road to cholesterol.

机构信息

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.

出版信息

J Biol Chem. 2020 Dec 18;295(51):17549-17559. doi: 10.1074/jbc.REV120.010723.

Abstract

The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.

摘要

胆固醇的合成需要 20 多种酶,其中许多酶的调控非常复杂。这些酶的翻译后控制为修饰途径中的通量提供了一种快速的手段。到目前为止,已经有几种酶被证明可以通过泛素-蛋白酶体途径快速降解,以响应胆固醇和其他固醇中间体。此外,几种酶的活性通过磷酸化机制改变。大多数工作都集中在两种限速酶上:3-羟-3-甲基戊二酰辅酶 A 还原酶和角鲨烯单加氧酶。在这里,我们回顾该领域的现有文献,以确定整个胆固醇合成途径调节的一些共同主题。我们强调了控制每种酶的丰富多样的输入,讨论了调节机制之间的相互作用,并总结了发现,揭示了胆固醇合成途径中调节的复杂协调网络。我们为胆固醇合成的翻译后控制的未来研究提供了路线图,毫无疑问,未来的研究将为这条对人类健康和疾病至关重要的迷人途径揭示进一步的曲折。

相似文献

1
Post-translational control of the long and winding road to cholesterol.
J Biol Chem. 2020 Dec 18;295(51):17549-17559. doi: 10.1074/jbc.REV120.010723.
2
3
The UPS and downs of cholesterol homeostasis.
Trends Biochem Sci. 2014 Nov;39(11):527-35. doi: 10.1016/j.tibs.2014.08.008. Epub 2014 Sep 11.
4
Navigating the Shallows and Rapids of Cholesterol Synthesis Downstream of HMGCR.
J Nutr Sci Vitaminol (Tokyo). 2015;61 Suppl:S154-6. doi: 10.3177/jnsv.61.S154.
5
Protein turnover regulated by cholesterol.
Curr Opin Lipidol. 2012 Feb;23(1):76-7. doi: 10.1097/MOL.0b013e32834f42b3.
6
Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).
J Biol Chem. 2013 Jun 28;288(26):18707-15. doi: 10.1074/jbc.R113.479808. Epub 2013 May 21.

引用本文的文献

2
Reducing LDL-Cholesterol to Very Low Levels: Sailing Between Established Benefits and Potential Risks.
High Blood Press Cardiovasc Prev. 2025 Mar;32(2):139-149. doi: 10.1007/s40292-025-00708-x. Epub 2025 Feb 25.
3
Lipid-Lowering Drugs and Pulmonary Vascular Disease: A Mendelian Randomization Study.
Pulm Circ. 2025 Jan 22;15(1):e70043. doi: 10.1002/pul2.70043. eCollection 2025 Jan.
5
The contribution of mitochondria-associated ER membranes to cholesterol homeostasis.
bioRxiv. 2024 Nov 11:2024.11.11.622945. doi: 10.1101/2024.11.11.622945.
8
9
Synergistic Effects of PARP Inhibition and Cholesterol Biosynthesis Pathway Modulation.
Cancer Res Commun. 2024 Sep 1;4(9):2427-2443. doi: 10.1158/2767-9764.CRC-23-0549.
10
TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway.
J Physiol Biochem. 2024 Aug;80(3):523-539. doi: 10.1007/s13105-024-01018-x. Epub 2024 Jun 15.

本文引用的文献

1
The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond.
Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Jan;1866(1):158837. doi: 10.1016/j.bbalip.2020.158837. Epub 2020 Oct 10.
2
Quality Control of ER Membrane Proteins by the RNF185/Membralin Ubiquitin Ligase Complex.
Mol Cell. 2020 Sep 3;79(5):768-781.e7. doi: 10.1016/j.molcel.2020.07.009. Epub 2020 Jul 31.
3
Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities.
Nat Metab. 2020 Feb;2(2):132-141. doi: 10.1038/s42255-020-0174-0. Epub 2020 Feb 10.
6
Squalene monooxygenase: a journey to the heart of cholesterol synthesis.
Prog Lipid Res. 2020 Jul;79:101033. doi: 10.1016/j.plipres.2020.101033. Epub 2020 Apr 28.
7
Oxysterols: From physiological tuners to pharmacological opportunities.
Br J Pharmacol. 2021 Aug;178(16):3089-3103. doi: 10.1111/bph.15073. Epub 2020 May 17.
8
Amiodarone Alters Cholesterol Biosynthesis through Tissue-Dependent Inhibition of Emopamil Binding Protein and Dehydrocholesterol Reductase 24.
ACS Chem Neurosci. 2020 May 20;11(10):1413-1423. doi: 10.1021/acschemneuro.0c00042. Epub 2020 Apr 29.
9
A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7150-7158. doi: 10.1073/pnas.1915923117. Epub 2020 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验