Suppr超能文献

AggreCount:一种无偏的图像分析工具,用于以空间定义的方式识别和量化细胞聚集体。

AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner.

机构信息

Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.

Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.

出版信息

J Biol Chem. 2020 Dec 18;295(51):17672-17683. doi: 10.1074/jbc.RA120.015398.

Abstract

Protein quality control is maintained by a number of integrated cellular pathways that monitor the folding and functionality of the cellular proteome. Defects in these pathways lead to the accumulation of misfolded or faulty proteins that may become insoluble and aggregate over time. Protein aggregates significantly contribute to the development of a number of human diseases such as amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease. In vitro, imaging-based, cellular studies have defined key biomolecular components that recognize and clear aggregates; however, no unifying method is available to quantify cellular aggregates, limiting our ability to reproducibly and accurately quantify these structures. Here we describe an ImageJ macro called AggreCount to identify and measure protein aggregates in cells. AggreCount is designed to be intuitive, easy to use, and customizable for different types of aggregates observed in cells. Minimal experience in coding is required to utilize the script. Based on a user-defined image, AggreCount will report a number of metrics: (i) total number of cellular aggregates, (ii) percentage of cells with aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v) localization of aggregates (cytosol, perinuclear, or nuclear). A data table of aggregate information on a per cell basis, as well as a summary table, is provided for further data analysis. We demonstrate the versatility of AggreCount by analyzing a number of different cellular aggregates including aggresomes, stress granules, and inclusion bodies caused by huntingtin polyglutamine expansion.

摘要

蛋白质质量控制是由许多整合的细胞途径维持的,这些途径监测细胞蛋白质组的折叠和功能。这些途径的缺陷会导致错误折叠或有缺陷的蛋白质积累,这些蛋白质可能会随着时间的推移变得不溶和聚集。蛋白质聚集体是许多人类疾病(如肌萎缩侧索硬化症、亨廷顿病和阿尔茨海默病)发展的重要原因。在体外,基于成像的细胞研究已经定义了识别和清除聚集体的关键生物分子成分;然而,目前还没有一种统一的方法来定量细胞聚集体,这限制了我们重现性和准确地定量这些结构的能力。在这里,我们描述了一个名为 AggreCount 的 ImageJ 宏,用于在细胞中识别和测量蛋白质聚集体。AggreCount 的设计直观、易于使用,并可针对细胞中观察到的不同类型的聚集体进行定制。使用脚本需要很少的编码经验。基于用户定义的图像,AggreCount 将报告一些指标:(i)细胞聚集体的总数,(ii)有聚集体的细胞百分比,(iii)每个细胞的聚集体数,(iv)聚集体的面积,以及(v)聚集体的定位(细胞质、核周或核内)。还提供了一个基于细胞的聚集体信息数据表和一个汇总表,用于进一步的数据分析。我们通过分析包括聚集体、应激颗粒和亨廷顿蛋白多聚谷氨酰胺扩展引起的包含体在内的许多不同细胞聚集体,展示了 AggreCount 的多功能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f20/7762942/560a34277770/SB-JBCJ200836F001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验