Suppr超能文献

用于探究细菌暴露下羊膜炎症反应的微工程化人诱导多能干细胞衍生的三维羊膜组织模型

Microengineered hiPSC-Derived 3D Amnion Tissue Model to Probe Amniotic Inflammatory Responses under Bacterial Exposure.

作者信息

Yin Fangchao, Zhu Yujuan, Wang Hui, Wang Yaqing, Li Dong, Qin Jianhua

机构信息

CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.

University of Chinese Academy of Sciences, Beijing 100049 China.

出版信息

ACS Biomater Sci Eng. 2020 Aug 10;6(8):4644-4652. doi: 10.1021/acsbiomaterials.0c00592. Epub 2020 Jul 24.

Abstract

Intra-amniotic infection is a common cause of preterm birth that can lead to adverse neonatal outcomes. Despite the basic and clinical significance, the study in normal and diseased human amnion is highly challenging due to the limited use of human primary tissues and the distinct divergence between animal models and human. Here, we established a microengineered hiPSC-derived amnion tissue model on a chip to investigate the inflammatory responses of amnion tissues to bacterial exposure. The microdevice consisted of two parallel channels with a middle matrix channel, creating a permissive microenvironment for amnion differentiation. Dissociated hiPSCs efficiently self-organized into cell cavity and finally differentiated into a polarized squamous amniotic epithelium on the chip under perfused 3D culture. When exposed to , amnion tissue exhibited significant functional impairments compared to the control, including induced cell apoptosis, disrupted cell junction integrity, and increased inflammatory factor secretion, recapitulating a series of characteristic clinical signs of intra-amniotic infection at an early stage. Together, this amnion-on-a-chip model provides a promising platform to investigate intrauterine inflammation in early gestation, indicating its potential applications in human embryology and reproductive medicine.

摘要

羊膜内感染是早产的常见原因,可导致不良的新生儿结局。尽管具有基础和临床意义,但由于人类原代组织的使用有限以及动物模型与人类之间存在明显差异,对正常和患病的人羊膜进行研究极具挑战性。在此,我们在芯片上建立了一种微工程化的人诱导多能干细胞(hiPSC)来源的羊膜组织模型,以研究羊膜组织对细菌暴露的炎症反应。该微装置由两个平行通道和一个中间基质通道组成,为羊膜分化创造了一个适宜的微环境。在灌注三维培养条件下,解离的hiPSC在芯片上高效地自组织形成细胞腔,最终分化为极化的鳞状羊膜上皮。当暴露于[此处原文缺失暴露的具体内容]时,与对照组相比,羊膜组织表现出明显的功能损伤,包括诱导细胞凋亡、破坏细胞连接完整性以及增加炎症因子分泌,在早期重现了羊膜内感染的一系列特征性临床症状。总之,这种芯片上的羊膜模型为研究早期妊娠的子宫内炎症提供了一个有前景的平台,表明了其在人类胚胎学和生殖医学中的潜在应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验