Suppr超能文献

从双能和质子计算机断层扫描中推导平均激发能图。

Deriving the mean excitation energy map from dual-energy and proton computed tomography.

作者信息

Vilches-Freixas Gloria, Quiñones Catherine Therese, Létang Jean Michel, Rit Simon

机构信息

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, INSERM, CREATIS UMR 5220, U1206, Centre Léon Bérard, F-69373 Lyon, France.

出版信息

Phys Imaging Radiat Oncol. 2018 Apr 26;6:20-24. doi: 10.1016/j.phro.2018.04.001. eCollection 2018 Apr.

Abstract

The mean excitation energy, , is an essential quantity for proton treatment planning. This work investigated the feasibility of extracting the spatial distribution of by combining two computed tomography (CT) modalities, dual-energy CT and proton CT, which provided the spatial distribution of the relative electron density and the stopping power relative to water, respectively. We provided the analytical derivation of as well as its uncertainty. Results were validated on simulated X-ray and proton CT images of a digital anthropomorphic phantom. Accuracy was below 15% with a large uncertainty, which demonstrated the potential and limits of the technique.

摘要

平均激发能(E_{mean})是质子治疗计划中的一个重要量。本研究通过结合两种计算机断层扫描(CT)模态,即双能CT和质子CT,来研究提取(E_{mean})空间分布的可行性,这两种模态分别提供了相对电子密度和相对于水的阻止本领的空间分布。我们给出了(E_{mean})的解析推导及其不确定度。结果在数字人体模型的模拟X射线和质子CT图像上得到了验证。精度低于15%且不确定度较大,这表明了该技术的潜力和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3de0/7807613/ddb45790a4ba/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验