Suppr超能文献

小分子靶向 RNA:从基础原理到临床应用。

Targeting RNA with small molecules: from fundamental principles towards the clinic.

机构信息

Duke University School of Medicine, Department of Biochemistry, Durham, North Carolina, USA.

Princeton University, Department of Chemical and Biological Engineering, Princeton, New Jersey, USA.

出版信息

Chem Soc Rev. 2021 Mar 1;50(4):2224-2243. doi: 10.1039/d0cs01261k.

Abstract

Recent advances in our understanding of RNA biology have uncovered crucial roles for RNA in multiple disease states, ranging from viral and bacterial infections to cancer and neurological disorders. As a result, multiple laboratories have become interested in developing drug-like small molecules to target RNA. However, this development comes with multiple unique challenges. For example, RNA is inherently dynamic and has limited chemical diversity. In addition, promiscuous RNA-binding ligands are often identified during screening campaigns. This Tutorial Review overviews important considerations and advancements for generating RNA-targeted small molecules, ranging from fundamental chemistry to promising small molecule examples with demonstrated clinical efficacy. Specifically, we begin by exploring RNA functional classes, structural hierarchy, and dynamics. We then discuss fundamental RNA recognition principles along with methods for small molecule screening and RNA structure determination. Finally, we review unique challenges and emerging solutions from both the RNA and small molecule perspectives for generating RNA-targeted ligands before highlighting a selection of the "Greatest Hits" to date. These molecules target RNA in a variety of diseases, including cancer, neurodegeneration, and viral infection, in cellular and animal model systems. Additionally, we explore the recently FDA-approved small molecule regulator of RNA splicing, risdiplam, for treatment of spinal muscular atrophy. Together, this Tutorial Review showcases the fundamental role of chemical and molecular recognition principles in enhancing our understanding of RNA biology and contributing to the rapidly growing number of RNA-targeted probes and therapeutics. In particular, we hope this widely accessible review will serve as inspiration for aspiring small molecule and/or RNA researchers.

摘要

近年来,我们对 RNA 生物学的理解取得了一些进展,发现 RNA 在多种疾病状态中发挥着至关重要的作用,从病毒和细菌感染到癌症和神经紊乱等。因此,许多实验室都有兴趣开发针对 RNA 的类似药物的小分子。然而,这一发展带来了许多独特的挑战。例如,RNA 本质上是动态的,化学多样性有限。此外,在筛选过程中经常会发现具有混杂 RNA 结合配体的化合物。本综述概述了生成针对 RNA 的小分子的重要考虑因素和进展,范围从基础化学到具有临床疗效的有前途的小分子实例。具体来说,我们首先探讨 RNA 的功能类别、结构层次和动态。然后,我们讨论了基本的 RNA 识别原理,以及小分子筛选和 RNA 结构确定的方法。最后,我们综述了从 RNA 和小分子两个角度来看生成针对 RNA 的配体的独特挑战和新兴解决方案,然后重点介绍了迄今为止的“代表作”。这些分子在包括癌症、神经退行性疾病和病毒感染在内的多种疾病中靶向 RNA,在细胞和动物模型系统中均有应用。此外,我们还探讨了最近获得 FDA 批准的用于治疗脊髓性肌萎缩症的 RNA 剪接小分子调节剂 risdiplam。本综述展示了化学和分子识别原理在增强我们对 RNA 生物学的理解以及促进越来越多的针对 RNA 的探针和治疗药物方面的基本作用。特别是,我们希望这个广泛可用的综述能为有志于从事小分子和/或 RNA 研究的人提供灵感。

相似文献

1
Targeting RNA with small molecules: from fundamental principles towards the clinic.
Chem Soc Rev. 2021 Mar 1;50(4):2224-2243. doi: 10.1039/d0cs01261k.
2
Small molecule-RNA targeting: starting with the fundamentals.
Chem Commun (Camb). 2020 Nov 26;56(94):14744-14756. doi: 10.1039/d0cc06796b.
3
RNA Structural Differentiation: Opportunities with Pattern Recognition.
Biochemistry. 2019 Jan 29;58(4):199-213. doi: 10.1021/acs.biochem.8b01090. Epub 2018 Dec 18.
4
Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNA-Small Molecule Interactions.
ACS Chem Biol. 2019 May 17;14(5):824-838. doi: 10.1021/acschembio.8b00945. Epub 2019 May 1.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Small molecule targeting of biologically relevant RNA tertiary and quaternary structures.
Cell Chem Biol. 2021 May 20;28(5):594-609. doi: 10.1016/j.chembiol.2021.03.003. Epub 2021 Apr 5.
7
Targeting RNA in mammalian systems with small molecules.
Wiley Interdiscip Rev RNA. 2018 Jul;9(4):e1477. doi: 10.1002/wrna.1477. Epub 2018 May 3.
8
Fluorescent indicator displacement assays to identify and characterize small molecule interactions with RNA.
Methods. 2019 Sep 1;167:3-14. doi: 10.1016/j.ymeth.2019.04.018. Epub 2019 Apr 30.
9
Targeting RNA with small molecules, from RNA structures to precision medicines: IUPHAR review: 40.
Br J Pharmacol. 2024 Nov;181(21):4152-4173. doi: 10.1111/bph.17308. Epub 2024 Sep 3.
10
Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands.
Angew Chem Int Ed Engl. 2017 Oct 16;56(43):13498-13502. doi: 10.1002/anie.201707641. Epub 2017 Sep 18.

引用本文的文献

1
Discovery of RNA-Targeting Small Molecules: Challenges and Future Directions.
MedComm (2020). 2025 Aug 24;6(9):e70342. doi: 10.1002/mco2.70342. eCollection 2025 Sep.
2
Targeting the SARS-CoV-2 RNA Translation Initiation Element SL1 by Molecules of Low Molecular Weight.
J Am Chem Soc. 2025 Aug 13;147(32):28783-28798. doi: 10.1021/jacs.5c05264. Epub 2025 Aug 4.
3
Aryl Guanyl Hydrazones: A Viable Strategy for Designing BBB-Permeable, Neuroactive Compounds?
ACS Chem Neurosci. 2025 Aug 6;16(15):2767-2775. doi: 10.1021/acschemneuro.5c00463. Epub 2025 Jul 22.
4
RNA chemistry and therapeutics.
Nat Rev Drug Discov. 2025 Jul 14. doi: 10.1038/s41573-025-01237-x.
5
The changing landscape of medicinal chemistry optimization.
Nat Rev Drug Discov. 2025 Jul 7. doi: 10.1038/s41573-025-01225-1.
6
7
Designing Reversible Photoswitching Azobenzene-Modified Nucleotide for Controlling Biological Function.
J Am Chem Soc. 2025 Jun 25;147(25):21638-21648. doi: 10.1021/jacs.5c03252. Epub 2025 Jun 13.
9
Path-Based Nonequilibrium Binding Free Energy Estimation, from Protein-Ligand to RNA-Ligand Binding.
J Chem Inf Model. 2025 Jun 23;65(12):6057-6072. doi: 10.1021/acs.jcim.5c00452. Epub 2025 Jun 6.
10
Structure-informed design of an ultrabright RNA-activated fluorophore.
Nat Chem. 2025 May 28. doi: 10.1038/s41557-025-01832-w.

本文引用的文献

1
Systematic analysis of the interactions driving small molecule-RNA recognition.
RSC Med Chem. 2020 Jun 4;11(7):802-813. doi: 10.1039/d0md00167h. eCollection 2020 Jul 1.
4
Regulation of MALAT1 triple helix stability and in vitro degradation by diphenylfurans.
Nucleic Acids Res. 2020 Aug 20;48(14):7653-7664. doi: 10.1093/nar/gkaa585.
5
Augmented base pairing networks encode RNA-small molecule binding preferences.
Nucleic Acids Res. 2020 Aug 20;48(14):7690-7699. doi: 10.1093/nar/gkaa583.
6
How We Think about Targeting RNA with Small Molecules.
J Med Chem. 2020 Sep 10;63(17):8880-8900. doi: 10.1021/acs.jmedchem.9b01927. Epub 2020 Mar 26.
7
Demonstration that Small Molecules can Bind and Stabilize Low-abundance Short-lived RNA Excited Conformational States.
J Mol Biol. 2020 Feb 14;432(4):1297-1304. doi: 10.1016/j.jmb.2019.12.009. Epub 2019 Dec 18.
9
Structural basis of a small molecule targeting RNA for a specific splicing correction.
Nat Chem Biol. 2019 Dec;15(12):1191-1198. doi: 10.1038/s41589-019-0384-5. Epub 2019 Oct 21.
10
R-BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes.
ACS Chem Biol. 2019 Dec 20;14(12):2691-2700. doi: 10.1021/acschembio.9b00631. Epub 2019 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验