Suppr超能文献

增强碱基配对网络编码 RNA-小分子结合偏好。

Augmented base pairing networks encode RNA-small molecule binding preferences.

机构信息

School of Computer Science, McGill University, Montreal H3A 0E9, Canada.

Mila - Quebec Artificial Intelligence Institute, H2S 3S1, Canada.

出版信息

Nucleic Acids Res. 2020 Aug 20;48(14):7690-7699. doi: 10.1093/nar/gkaa583.

Abstract

RNA-small molecule binding is a key regulatory mechanism which can stabilize 3D structures and activate molecular functions. The discovery of RNA-targeting compounds is thus a current topic of interest for novel therapies. Our work is a first attempt at bringing the scalability and generalization abilities of machine learning methods to the problem of RNA drug discovery, as well as a step towards understanding the interactions which drive binding specificity. Our tool, RNAmigos, builds and encodes a network representation of RNA structures to predict likely ligands for novel binding sites. We subject ligand predictions to virtual screening and show that we are able to place the true ligand in the 71st-73rd percentile in two decoy libraries, showing a significant improvement over several baselines, and a state of the art method. Furthermore, we observe that augmenting structural networks with non-canonical base pairing data is the only representation able to uncover a significant signal, suggesting that such interactions are a necessary source of binding specificity. We also find that pre-training with an auxiliary graph representation learning task significantly boosts performance of ligand prediction. This finding can serve as a general principle for RNA structure-function prediction when data is scarce. RNAmigos shows that RNA binding data contains structural patterns with potential for drug discovery, and provides methodological insights for possible applications to other structure-function learning tasks. The source code, data and a Web server are freely available at http://rnamigos.cs.mcgill.ca.

摘要

RNA-小分子结合是一种关键的调控机制,它可以稳定 3D 结构并激活分子功能。因此,发现 RNA 靶向化合物是目前新型疗法的研究热点。我们的工作首次尝试将机器学习方法的可扩展性和泛化能力应用于 RNA 药物发现问题,同时也为理解驱动结合特异性的相互作用迈出了一步。我们的工具 RNAmigos 构建并编码 RNA 结构的网络表示,以预测新结合位点的可能配体。我们对配体预测进行虚拟筛选,结果表明,我们能够将真实配体放在两个诱饵库的第 71-73 百分位,与几个基线相比有显著的提高,并且达到了最新方法的水平。此外,我们观察到,用非规范碱基配对数据增强结构网络是唯一能够揭示显著信号的表示方法,这表明这种相互作用是结合特异性的必要来源。我们还发现,使用辅助图表示学习任务进行预训练可以显著提高配体预测的性能。当数据稀缺时,这一发现可以作为 RNA 结构-功能预测的一般原则。RNAmigos 表明,RNA 结合数据包含具有药物发现潜力的结构模式,并为可能应用于其他结构-功能学习任务提供了方法学见解。源代码、数据和 Web 服务器可在 http://rnamigos.cs.mcgill.ca 上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098f/7430648/5f5b325b9827/gkaa583fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验