Kabi Prasenjit, Razdan Vishank, Roy Durbar, Bansal Lalit, Sahoo Sumita, Mukherjee Rabibrata, Chaudhuri Swetaprovo, Basu Saptarshi
Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India.
Soft Matter. 2021 Feb 19;17(6):1487-1496. doi: 10.1039/d0sm02106g.
Strategic control of evaporation dynamics can help control oscillation modes and internal flow field in an oscillating sessile droplet. This article presents the study of an oscillating droplet on a bio-inspired "sticky" surface to better understand the nexus between the modes of evaporation and oscillation. Oscillation in droplets can be characterized by the number of nodes forming on the surface and is referred to as the mode of oscillation. An evaporating sessile droplet under constant periodic perturbation naturally self-tunes between different oscillation modes depending on its geometry. The droplet geometry evolves according to the mode of evaporation controlled by substrate topography. We use a bio-inspired, rose patterned, "sticky" hydrophobic substrate to perpetually pin the contact line of the droplet in order to hence achieve a single mode of evaporation for most of the droplet's lifetime. This allows the prediction of experimentally observed oscillation mode transitions at different excitation frequencies. We present simple scaling arguments to predict the velocity of the internal flow induced by the oscillation. The findings are beneficial to applications which seek to tailor energy and mass transfer rates across liquid droplets by using bio-inspired surfaces.
对蒸发动力学的策略性控制有助于控制振荡固着液滴的振荡模式和内部流场。本文介绍了对生物启发式“粘性”表面上振荡液滴的研究,以更好地理解蒸发模式与振荡之间的关系。液滴中的振荡可以通过表面形成的节点数量来表征,并被称为振荡模式。在恒定周期性扰动下蒸发的固着液滴会根据其几何形状在不同振荡模式之间自然地自我调整。液滴的几何形状会根据由基底形貌控制的蒸发模式而演变。我们使用一种生物启发式的、玫瑰图案的“粘性”疏水基底来永久固定液滴的接触线,从而在液滴的大部分寿命期间实现单一的蒸发模式。这使得我们能够预测在不同激发频率下实验观察到的振荡模式转变。我们提出了简单的标度论证来预测由振荡引起的内部流动速度。这些发现对那些试图通过使用生物启发式表面来调整液滴间能量和质量传递速率的应用是有益的。