Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
Department of Cardiology, Privatklinik Dr. Robert Schindlbeck, Herrsching am Ammersee, Germany.
Clin Hemorheol Microcirc. 2021;79(4):505-518. doi: 10.3233/CH-201025.
Endothelial shear stress (ESS) is a local hemodynamic factor that is dependent on vessel geometry and influences the process of atherogenesis. As in vivo measurements of ESS are not possible, it must be calculated using computational fluid dynamics (CFD). In this feasibility study we explore CFD-models generated from coronary CT-angiography (CCTA) using an individualised blood viscosity and a pulsatile flow profile derived from in vivo measurements.
We retrospectively recruited 25 consecutive patients who received a CCTA followed by a coronary angiography including intravascular ultrasound (IVUS) and generated 3D models of the coronary arteries from the CT-datasets. We then performed CFD-simulations on these models. Hemodynamically non-relevant stenosis were identified in IVUS. They were isolated in the CFD-model and separated longitudinally into a half with atherosclerotic lesion (AL) and one without (NAL). ESS was measured and compared for both halves.
After excluding vessels with no IVUS data or relevant stenosis we isolated 31 hemodynamically non-relevant excentric AL from a total of 14 vessels. AL segments showed consistently significantly lower ESS when compared to their corresponding NAL segments when regarding minimum (0.9 Pa, CI [0.6, 1.2] vs. 1.3 Pa, CI [0.9, 1.8]; p = 0.004), mean (5.0 Pa, CI [3.4, 6.0] vs. 6.7 Pa, CI [5.5, 8.4]; p = 0.008) and maximum ESS values (12.4 Pa, CI [8.6, 14.6] vs. 19.6 Pa, CI [12.4, 21.0]; p = 0.005). Qualitatively ESS was lower on the inside of bifurcations and curvatures.
CFD simulations of coronary arteries from CCTA with an individualised flow profile and blood viscosity are feasible and could provide further prognostic information and a better risk stratification in coronary artery disease. Further prospective studies are needed to investigate this claim.
内皮剪切应力(ESS)是一种局部血流动力学因素,取决于血管几何形状,并影响动脉粥样硬化的发生过程。由于无法进行 ESS 的体内测量,因此必须使用计算流体动力学(CFD)进行计算。在这项可行性研究中,我们探索了使用源自体内测量的个体化血液粘度和脉动流谱从冠状动脉 CT 血管造影(CCTA)生成的 CFD 模型。
我们回顾性招募了 25 名连续接受 CCTA 检查的患者,随后进行了冠状动脉造影检查,包括血管内超声(IVUS),并从 CT 数据集生成了冠状动脉的 3D 模型。然后,我们对这些模型进行了 CFD 模拟。在 IVUS 中确定了血流动力学无关的狭窄。在 CFD 模型中对它们进行了隔离,并沿长度方向将其分为具有动脉粥样硬化病变(AL)的一半和没有 AL 的一半。测量并比较了这两半的 ESS。
在排除了没有 IVUS 数据或相关狭窄的血管后,我们从总共 14 个血管中分离出 31 个偏心的血流动力学无关的 AL。当比较最小 ESS(0.9 Pa,CI [0.6,1.2] 与 1.3 Pa,CI [0.9,1.8];p = 0.004)、平均 ESS(5.0 Pa,CI [3.4,6.0] 与 6.7 Pa,CI [5.5,8.4];p = 0.008)和最大 ESS 值(12.4 Pa,CI [8.6,14.6] 与 19.6 Pa,CI [12.4,21.0];p = 0.005)时,AL 段的 ESS 始终明显低于其对应的 NAL 段。定性地说,在分叉和弯曲处的 ESS 较低。
使用个体化的血流谱和血液粘度从 CCTA 进行冠状动脉 CFD 模拟是可行的,可为冠状动脉疾病提供进一步的预后信息和更好的风险分层。需要进一步的前瞻性研究来验证这一观点。