Suppr超能文献

基于图能量的中心性度量在致痫灶有创脑电图电极检测中的应用。

Graph energy based centrality measures to detect epileptogenic focal invasive EEG electrodes.

机构信息

Department of Electronics and Communication, National Institute of Technology Calicut, Kerala, India.

出版信息

Seizure. 2021 Feb;85:127-137. doi: 10.1016/j.seizure.2020.12.019. Epub 2021 Jan 1.

Abstract

PURPOSE

Medically intractable epilepsy can be treated with surgical interventions, which require localization of the cortical region where seizures start. This region is referred to as the epileptogenic zone (EZ). Good surgical outcomes depend on an exact localization of the EZ.

METHODS

We propose a graph theoretical approach providing a novel method to localize the epileptogenic zone using invasive electroencephalogram (EEG) data. The proposed methods employ centrality determination using three graph energies, namely simple graph energy, Laplacian energy, and distance energy. Centrality values of invasive EEG electrodes from 19 patients were analyzed at different frequency bands and at different time points. K-means clustering was used to distinguish focal (electrodes placed in the epileptogenic zone) from non-focal electrodes using the centrality values obtained.

RESULTS

Focal electrodes show higher centrality values when compared to non-focal electrodes. All three graph energy based centrality measures proposed show maximum f-score and accuracy during the early seizure phase in the gamma frequency band. Among the three proposed methods, simple graph energy based centrality outperforms Laplacian centrality and distance energy based centrality and also other related and competitive methods available in the literature in terms of accuracy and f-score.

CONCLUSION

Graph energy based centrality measures are useful parameters for the delineation of the epileptogenic zone. Among the three centrality measures examined, simple graph energy based centrality proved best suited for this purpose.

摘要

目的

药物难治性癫痫可以通过手术干预进行治疗,这需要定位癫痫起始的皮质区域。这个区域被称为致痫区(EZ)。良好的手术效果取决于 EZ 的准确定位。

方法

我们提出了一种图论方法,提供了一种使用侵入性脑电图(EEG)数据定位致痫区的新方法。所提出的方法使用三种图能量,即简单图能量、拉普拉斯能量和距离能量来确定中心性。对 19 名患者的侵入性 EEG 电极在不同的频带和不同的时间点进行了中心性值分析。使用获得的中心性值,通过 K-均值聚类来区分焦点(放置在致痫区的电极)和非焦点电极。

结果

与非焦点电极相比,焦点电极的中心性值更高。在伽马频带的早期癫痫发作阶段,所有三种基于图能量的中心性度量都显示出最高的 F1 值和准确性。在三种提出的方法中,基于简单图能量的中心性优于基于拉普拉斯中心性和距离能量的中心性,并且在准确性和 F1 值方面优于文献中提供的其他相关和有竞争力的方法。

结论

基于图能量的中心性度量是描绘致痫区的有用参数。在三种检查的中心性度量中,基于简单图能量的中心性被证明最适合用于此目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验