The Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Nat Biotechnol. 2021 May;39(5):599-608. doi: 10.1038/s41587-020-00795-2. Epub 2021 Jan 18.
Single-cell transcriptomic analysis is widely used to study human tumors. However, it remains challenging to distinguish normal cell types in the tumor microenvironment from malignant cells and to resolve clonal substructure within the tumor. To address these challenges, we developed an integrative Bayesian segmentation approach called copy number karyotyping of aneuploid tumors (CopyKAT) to estimate genomic copy number profiles at an average genomic resolution of 5 Mb from read depth in high-throughput single-cell RNA sequencing (scRNA-seq) data. We applied CopyKAT to analyze 46,501 single cells from 21 tumors, including triple-negative breast cancer, pancreatic ductal adenocarcinoma, anaplastic thyroid cancer, invasive ductal carcinoma and glioblastoma, to accurately (98%) distinguish cancer cells from normal cell types. In three breast tumors, CopyKAT resolved clonal subpopulations that differed in the expression of cancer genes, such as KRAS, and signatures, including epithelial-to-mesenchymal transition, DNA repair, apoptosis and hypoxia. These data show that CopyKAT can aid in the analysis of scRNA-seq data in a variety of solid human tumors.
单细胞转录组分析被广泛用于研究人类肿瘤。然而,要从肿瘤微环境中的正常细胞类型中区分恶性细胞,并解析肿瘤内的克隆亚结构,仍然具有挑战性。为了解决这些挑战,我们开发了一种整合的贝叶斯分割方法,称为非整倍体肿瘤的拷贝数核型分析(CopyKAT),用于从高通量单细胞 RNA 测序(scRNA-seq)数据中的读取深度估计基因组拷贝数图谱,平均基因组分辨率为 5Mb。我们应用 CopyKAT 分析了来自 21 个肿瘤的 46501 个单细胞,包括三阴性乳腺癌、胰腺导管腺癌、间变性甲状腺癌、浸润性导管癌和胶质母细胞瘤,以准确(98%)区分癌症细胞和正常细胞类型。在三个乳腺癌肿瘤中,CopyKAT 解析了在癌症基因(如 KRAS)表达和特征(包括上皮间质转化、DNA 修复、凋亡和缺氧)方面存在差异的克隆亚群。这些数据表明,CopyKAT 可以帮助分析各种实体人类肿瘤的 scRNA-seq 数据。
Commun Biol. 2025-8-22
Acta Neuropathol Commun. 2025-8-20
Nature. 2025-8-20
Acta Neuropathol Commun. 2025-8-14
Surg Pathol Clin. 2019-12
Cancer Cell. 2019-10-3
Cell. 2019-6-6
Bioinformatics. 2019-2-1
Cancer Cell. 2018-4-2