文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从单细胞转录组中描绘人类肿瘤的拷贝数和克隆亚结构。

Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes.

机构信息

The Center for Bioinformatics and Computational Biology, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.

Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Nat Biotechnol. 2021 May;39(5):599-608. doi: 10.1038/s41587-020-00795-2. Epub 2021 Jan 18.


DOI:10.1038/s41587-020-00795-2
PMID:33462507
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8122019/
Abstract

Single-cell transcriptomic analysis is widely used to study human tumors. However, it remains challenging to distinguish normal cell types in the tumor microenvironment from malignant cells and to resolve clonal substructure within the tumor. To address these challenges, we developed an integrative Bayesian segmentation approach called copy number karyotyping of aneuploid tumors (CopyKAT) to estimate genomic copy number profiles at an average genomic resolution of 5 Mb from read depth in high-throughput single-cell RNA sequencing (scRNA-seq) data. We applied CopyKAT to analyze 46,501 single cells from 21 tumors, including triple-negative breast cancer, pancreatic ductal adenocarcinoma, anaplastic thyroid cancer, invasive ductal carcinoma and glioblastoma, to accurately (98%) distinguish cancer cells from normal cell types. In three breast tumors, CopyKAT resolved clonal subpopulations that differed in the expression of cancer genes, such as KRAS, and signatures, including epithelial-to-mesenchymal transition, DNA repair, apoptosis and hypoxia. These data show that CopyKAT can aid in the analysis of scRNA-seq data in a variety of solid human tumors.

摘要

单细胞转录组分析被广泛用于研究人类肿瘤。然而,要从肿瘤微环境中的正常细胞类型中区分恶性细胞,并解析肿瘤内的克隆亚结构,仍然具有挑战性。为了解决这些挑战,我们开发了一种整合的贝叶斯分割方法,称为非整倍体肿瘤的拷贝数核型分析(CopyKAT),用于从高通量单细胞 RNA 测序(scRNA-seq)数据中的读取深度估计基因组拷贝数图谱,平均基因组分辨率为 5Mb。我们应用 CopyKAT 分析了来自 21 个肿瘤的 46501 个单细胞,包括三阴性乳腺癌、胰腺导管腺癌、间变性甲状腺癌、浸润性导管癌和胶质母细胞瘤,以准确(98%)区分癌症细胞和正常细胞类型。在三个乳腺癌肿瘤中,CopyKAT 解析了在癌症基因(如 KRAS)表达和特征(包括上皮间质转化、DNA 修复、凋亡和缺氧)方面存在差异的克隆亚群。这些数据表明,CopyKAT 可以帮助分析各种实体人类肿瘤的 scRNA-seq 数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/9396a8d6a6b9/nihms-1654346-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/8925a6fc285d/nihms-1654346-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/7858c7ca2b65/nihms-1654346-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/6ac4f143729a/nihms-1654346-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/2927edeb0e14/nihms-1654346-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/9396a8d6a6b9/nihms-1654346-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/8925a6fc285d/nihms-1654346-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/7858c7ca2b65/nihms-1654346-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/6ac4f143729a/nihms-1654346-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/2927edeb0e14/nihms-1654346-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/8122019/9396a8d6a6b9/nihms-1654346-f0005.jpg

相似文献

[1]
Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes.

Nat Biotechnol. 2021-5

[2]
A variational algorithm to detect the clonal copy number substructure of tumors from scRNA-seq data.

Nat Commun. 2023-2-25

[3]
Haplotype-aware analysis of somatic copy number variations from single-cell transcriptomes.

Nat Biotechnol. 2023-3

[4]
Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression.

EBioMedicine. 2021-4

[5]
Integration of Pan-Cancer Cell Line and Single-Cell Transcriptomic Profiles Enables Inference of Therapeutic Vulnerabilities in Heterogeneous Tumors.

Cancer Res. 2024-6-14

[6]
Single-cell transcriptome profiling of primary tumors and paired organoids of pancreatobiliary cancer.

Cancer Lett. 2024-2-1

[7]
Single-cell decoding of drug induced transcriptomic reprogramming in triple negative breast cancers.

Genome Biol. 2024-7-18

[8]
Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma.

Cell Res. 2019-7-4

[9]
Integrated genomic, transcriptomic, and RNA-interference analysis of genes in somatic copy number gains in pancreatic ductal adenocarcinoma.

Pancreas. 2013-8

[10]
Single-Cell DNA Sequencing Reveals Punctuated and Gradual Clonal Evolution in Hepatocellular Carcinoma.

Gastroenterology. 2022-1

引用本文的文献

[1]
Coalescing single-cell genomes and transcriptomes to decode breast cancer progression.

Cell. 2025-8-26

[2]
Resolving tumor microenvironment heterogeneity to forecast immunotherapy response in triple-negative breast cancer through multi-scale analysis.

Front Oncol. 2025-8-19

[3]
Integrated single-cell and bulk transcriptomic profiling reveals cancer-associated fibroblast heterogeneity in glioblastoma and establishes a clinically actionable prognostic model and preliminary experimental validation.

Hereditas. 2025-8-26

[4]
PCK1 and ALDH1A1 are identified as biomarkers for inherent drug resistance in hepatocellular carcinoma.

Discov Oncol. 2025-8-26

[5]
Spatiotemporal analyses of the pan-cancer single-cell landscape reveal widespread profibrotic ecotypes associated with tumor immunity.

Nat Cancer. 2025-8-25

[6]
Identification of malignant cells in single-cell transcriptomics data.

Commun Biol. 2025-8-22

[7]
Germline structural variations involving the pediatric brain tumor transcriptome include disease-relevant and ancestry-related genes.

Acta Neuropathol Commun. 2025-8-20

[8]
Axonal injury is a targetable driver of glioblastoma progression.

Nature. 2025-8-20

[9]
FPR3 orchestrates macrophage polarization in breast cancer: multi-omics dissection of prognostic relevance and therapeutic targeting.

Cancer Cell Int. 2025-8-18

[10]
PIT-1/SF-1-positive pituitary tumors in patients with acromegaly: transcriptomic perspective.

Acta Neuropathol Commun. 2025-8-14

本文引用的文献

[1]
Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems.

Sci Rep. 2020-1-15

[2]
Endocrine Pathology: Advances, Updates, and Diagnostic Pearls.

Surg Pathol Clin. 2019-12

[3]
Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer.

Cancer Cell. 2019-10-3

[4]
An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma.

Cell. 2019-7-18

[5]
Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma.

Cell Res. 2019-7-4

[6]
Comprehensive Integration of Single-Cell Data.

Cell. 2019-6-6

[7]
ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R.

Bioinformatics. 2019-2-1

[8]
Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data.

Genome Res. 2018-6-13

[9]
Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing.

Cell. 2018-4-19

[10]
Genomic and Functional Approaches to Understanding Cancer Aneuploidy.

Cancer Cell. 2018-4-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索