Suppr超能文献

泛癌系和单细胞转录组谱的整合能够推断异质性肿瘤的治疗弱点。

Integration of Pan-Cancer Cell Line and Single-Cell Transcriptomic Profiles Enables Inference of Therapeutic Vulnerabilities in Heterogeneous Tumors.

机构信息

Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota.

Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.

出版信息

Cancer Res. 2024 Jun 14;84(12):2021-2033. doi: 10.1158/0008-5472.CAN-23-3005.

Abstract

UNLABELLED

Single-cell RNA sequencing (scRNA-seq) greatly advanced the understanding of intratumoral heterogeneity by identifying distinct cancer cell subpopulations. However, translating biological differences into treatment strategies is challenging due to a lack of tools to facilitate efficient drug discovery that tackles heterogeneous tumors. Developing such approaches requires accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we developed a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening data sets. This method achieved high accuracy in separating cells into their correct cellular drug response statuses. In three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), the predicted results using scIDUC were accurate and mirrored biological expectations. In the first two tests, the framework identified drugs for cell subpopulations that were resistant to standard-of-care (SOC) therapies due to intrinsic resistance or tumor microenvironmental effects, and the results showed high consistency with experimental findings from the original studies. In the third test using newly generated SOC therapy-resistant cell lines, scIDUC identified efficacious drugs for the resistant line, and the predictions were validated with in vitro experiments. Together, this study demonstrates the potential of scIDUC to quickly translate scRNA-seq data into drug responses for individual cells, displaying the potential as a tool to improve the treatment of heterogenous tumors.

SIGNIFICANCE

A versatile method that infers cell-level drug response in scRNA-seq data facilitates the development of therapeutic strategies to target heterogeneous subpopulations within a tumor and address issues such as treatment failure and resistance.

摘要

未加标签

单细胞 RNA 测序 (scRNA-seq) 通过鉴定不同的癌细胞亚群,极大地提高了对肿瘤内异质性的认识。然而,由于缺乏促进有效药物发现的工具,将这些生物学差异转化为治疗策略具有挑战性,而这些工具可以解决异质肿瘤的问题。开发这种方法需要在单细胞水平上准确预测药物反应,为特定的细胞亚群提供治疗选择。在这里,我们开发了一种透明的计算框架(名为 scIDUC),通过将单细胞转录组谱与大型、富含数据的泛癌症细胞系筛选数据集相结合,在单细胞基础上预测药物疗效。该方法在将细胞正确分类到其正确的细胞药物反应状态方面具有很高的准确性。在涵盖不同疾病(横纹肌肉瘤、胰腺导管腺癌和去势抵抗性前列腺癌)的三个独立前瞻性测试中,使用 scIDUC 预测的结果是准确的,反映了生物学预期。在前两个测试中,该框架确定了对标准治疗(SOC)疗法具有内在耐药性或肿瘤微环境效应的细胞亚群的药物,结果与原始研究中的实验结果高度一致。在第三个使用新产生的 SOC 耐药细胞系的测试中,scIDUC 确定了对耐药系有效的药物,并且通过体外实验验证了预测。总之,这项研究表明,scIDUC 有可能将 scRNA-seq 数据快速转化为个体细胞的药物反应,有望成为改善异质肿瘤治疗的工具。

意义

一种推断 scRNA-seq 数据中细胞水平药物反应的多功能方法,有助于开发针对肿瘤内异质亚群的治疗策略,并解决治疗失败和耐药等问题。

相似文献

8
Human Pancreatic Cancer Single-Cell Atlas Reveals Association of CXCL10+ Fibroblasts and Basal Subtype Tumor Cells.
Clin Cancer Res. 2025 Feb 17;31(4):756-772. doi: 10.1158/1078-0432.CCR-24-2183.
9
Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma.
Cell Res. 2019 Sep;29(9):725-738. doi: 10.1038/s41422-019-0195-y. Epub 2019 Jul 4.

引用本文的文献

1
Omics-Mediated Treatment for Advanced Prostate Cancer: Moving Towards Precision Oncology.
Int J Mol Sci. 2025 Aug 2;26(15):7475. doi: 10.3390/ijms26157475.
2
Can astragalus polysaccharides truly boost the treatment of pancreatic cancer?
World J Clin Oncol. 2025 May 24;16(5):101406. doi: 10.5306/wjco.v16.i5.101406.
4
Comparative analysis of nuclei isolation methods for brain single-nucleus RNA sequencing.
bioRxiv. 2025 Mar 26:2025.03.25.645306. doi: 10.1101/2025.03.25.645306.
5
Pan-cancer analysis shapes the understanding of cancer biology and medicine.
Cancer Commun (Lond). 2025 Jul;45(7):728-746. doi: 10.1002/cac2.70008. Epub 2025 Mar 22.
6
Soft tissue sarcomas at the single-cell and spatial resolution: new markers and targets.
Cancer Gene Ther. 2025 Jan;32(1):11-21. doi: 10.1038/s41417-024-00856-7. Epub 2024 Nov 24.
7
Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data.
Expert Opin Drug Discov. 2024 Jul;19(7):841-853. doi: 10.1080/17460441.2024.2365370. Epub 2024 Jun 11.
8
A review of computational methods for predicting cancer drug response at the single-cell level through integration with bulk RNAseq data.
Curr Opin Struct Biol. 2024 Feb;84:102745. doi: 10.1016/j.sbi.2023.102745. Epub 2023 Dec 17.

本文引用的文献

1
Simplicity: Web-Based Visualization and Analysis of High-Throughput Cancer Cell Line Screens.
J Cancer Sci Clin Ther. 2023;7(4):249-252. doi: 10.26502/jcsct.5079217. Epub 2023 Dec 8.
2
Predicting cellular responses to complex perturbations in high-throughput screens.
Mol Syst Biol. 2023 Jun 12;19(6):e11517. doi: 10.15252/msb.202211517. Epub 2023 May 8.
3
Applications of single-cell RNA sequencing in drug discovery and development.
Nat Rev Drug Discov. 2023 Jun;22(6):496-520. doi: 10.1038/s41573-023-00688-4. Epub 2023 Apr 28.
4
Computational drug discovery for castration-resistant prostate cancers through in vitro drug response modeling.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2218522120. doi: 10.1073/pnas.2218522120. Epub 2023 Apr 17.
5
Trends and Potential of Machine Learning and Deep Learning in Drug Study at Single-Cell Level.
Research (Wash D C). 2023;6:0050. doi: 10.34133/research.0050. Epub 2023 Mar 9.
6
scDR: Predicting Drug Response at Single-Cell Resolution.
Genes (Basel). 2023 Jan 19;14(2):268. doi: 10.3390/genes14020268.
7
Enabling Single-Cell Drug Response Annotations from Bulk RNA-Seq Using SCAD.
Adv Sci (Weinh). 2023 Apr;10(11):e2204113. doi: 10.1002/advs.202204113. Epub 2023 Feb 10.
9
Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data.
Nat Commun. 2022 Oct 30;13(1):6494. doi: 10.1038/s41467-022-34277-7.
10
Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization.
Mathematics (Basel). 2021 Nov 2;9(22). doi: 10.3390/math9222840. Epub 2021 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验