Suppr超能文献

埃博拉病毒糖蛋白与胆固醇相互作用,增强膜融合和细胞进入。

Ebola virus glycoprotein interacts with cholesterol to enhance membrane fusion and cell entry.

机构信息

Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.

Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.

出版信息

Nat Struct Mol Biol. 2021 Feb;28(2):181-189. doi: 10.1038/s41594-020-00548-4. Epub 2021 Jan 18.

Abstract

Cholesterol serves critical roles in enveloped virus fusion by modulating membrane properties. The glycoprotein (GP) of Ebola virus (EBOV) promotes fusion in the endosome, a process that requires the endosomal cholesterol transporter NPC1. However, the role of cholesterol in EBOV fusion is unclear. Here we show that cholesterol in GP-containing membranes enhances fusion and the membrane-proximal external region and transmembrane (MPER/TM) domain of GP interacts with cholesterol via several glycine residues in the GP2 TM domain, notably G660. Compared to wild-type (WT) counterparts, a G660L mutation caused a more open angle between MPER and TM domains in an MPER/TM construct, higher probability of stalling at hemifusion for GP2 proteoliposomes and lower cell entry of virus-like particles (VLPs). VLPs with depleted cholesterol show reduced cell entry, and VLPs produced under cholesterol-lowering statin conditions show less frequent entry than respective controls. We propose that cholesterol-TM interactions affect structural features of GP2, thereby facilitating fusion and cell entry.

摘要

胆固醇通过调节膜性质在包膜病毒融合中发挥关键作用。埃博拉病毒(EBOV)的糖蛋白(GP)在内涵体中促进融合,这是一个需要内涵体胆固醇转运蛋白 NPC1 的过程。然而,胆固醇在 EBOV 融合中的作用尚不清楚。在这里,我们表明含有 GP 的膜中的胆固醇增强了融合,并且 GP 的膜近端外部区域和跨膜(MPER/TM)结构域通过 GP2 TM 结构域中的几个甘氨酸残基与胆固醇相互作用,特别是 G660。与野生型(WT)相比,G660L 突变导致 MPER 和 TM 结构域之间的夹角更大,GP2 脂蛋白体在半融合时停顿的概率更高,病毒样颗粒(VLPs)进入细胞的效率更低。胆固醇耗尽的 VLPs 显示出降低的细胞进入,并且在降低胆固醇的他汀类药物条件下产生的 VLPs 比各自的对照进入的频率更低。我们提出胆固醇-TM 相互作用影响 GP2 的结构特征,从而促进融合和细胞进入。

相似文献

1
Ebola virus glycoprotein interacts with cholesterol to enhance membrane fusion and cell entry.
Nat Struct Mol Biol. 2021 Feb;28(2):181-189. doi: 10.1038/s41594-020-00548-4. Epub 2021 Jan 18.
2
Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7987-E7996. doi: 10.1073/pnas.1708052114. Epub 2017 Sep 5.
3
Direct Intracellular Visualization of Ebola Virus-Receptor Interaction by Proximity Ligation.
mBio. 2021 Jan 12;12(1):e03100-20. doi: 10.1128/mBio.03100-20.
4
Direct Visualization of Ebola Virus Fusion Triggering in the Endocytic Pathway.
mBio. 2016 Feb 9;7(1):e01857-15. doi: 10.1128/mBio.01857-15.
5
Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin.
Biochem Biophys Res Commun. 2011 Apr 1;407(1):74-8. doi: 10.1016/j.bbrc.2011.02.110. Epub 2011 Mar 6.
6
Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding.
PLoS Biol. 2020 Feb 10;18(2):e3000626. doi: 10.1371/journal.pbio.3000626. eCollection 2020 Feb.
7
Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.
PLoS Pathog. 2016 Jan 5;12(1):e1005373. doi: 10.1371/journal.ppat.1005373. eCollection 2016 Jan.
8
Ebola virus entry requires the cholesterol transporter Niemann-Pick C1.
Nature. 2011 Aug 24;477(7364):340-3. doi: 10.1038/nature10348.
10
A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry.
J Virol. 2017 Apr 13;91(9). doi: 10.1128/JVI.00177-17. Print 2017 May 1.

引用本文的文献

1
Phytochemical alkaloids orchestrate immunometabolism against viral infections.
Natl Sci Rev. 2025 Jun 16;12(9):nwaf190. doi: 10.1093/nsr/nwaf190. eCollection 2025 Sep.
2
The Lassa Virus Stable Signal Peptide Undergoes a Conformational Change to Aid Viral Fusion.
Chemistry. 2025 Mar 25;31(18):e202403608. doi: 10.1002/chem.202403608. Epub 2025 Mar 7.
3
Insight into the Interaction Mechanism of Pseudorabies Virus Infection.
Biology (Basel). 2024 Dec 4;13(12):1013. doi: 10.3390/biology13121013.
4
Exploring the influence of anionic lipids in the host cell membrane on viral fusion.
Biochem Soc Trans. 2024 Dec 19;52(6):2593-2602. doi: 10.1042/BST20240833.
5
Unraveling dual fusion mechanisms in BmNPV GP64: critical roles of CARC motifs and signal peptide retention.
J Virol. 2025 Jan 31;99(1):e0151124. doi: 10.1128/jvi.01511-24. Epub 2024 Nov 27.
6
Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7.
Nat Commun. 2024 Oct 1;15(1):8479. doi: 10.1038/s41467-024-52773-w.
7
Navigating the Complex Landscape of Ebola Infection Treatment: A Review of Emerging Pharmacological Approaches.
Infect Dis Ther. 2024 Jan;13(1):21-55. doi: 10.1007/s40121-023-00913-y. Epub 2024 Jan 19.
8
The Art of Viral Membrane Fusion and Penetration.
Subcell Biochem. 2023;106:113-152. doi: 10.1007/978-3-031-40086-5_4.
9
Inconspicuous Yet Indispensable: The Coronavirus Spike Transmembrane Domain.
Int J Mol Sci. 2023 Nov 16;24(22):16421. doi: 10.3390/ijms242216421.
10
Viral Membrane Fusion: A Dance Between Proteins and Lipids.
Annu Rev Virol. 2023 Sep 29;10(1):139-161. doi: 10.1146/annurev-virology-111821-093413.

本文引用的文献

1
Target Membrane Cholesterol Modulates Single Influenza Virus Membrane Fusion Efficiency but Not Rate.
Biophys J. 2020 May 19;118(10):2426-2433. doi: 10.1016/j.bpj.2020.03.021. Epub 2020 Apr 4.
2
Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding.
PLoS Biol. 2020 Feb 10;18(2):e3000626. doi: 10.1371/journal.pbio.3000626. eCollection 2020 Feb.
3
Science under fire: Ebola researchers fight to test drugs and vaccines in a war zone.
Nature. 2019 Aug;572(7767):16-17. doi: 10.1038/d41586-019-02258-4.
5
An exploration of conditions proposed to trigger the Ebola virus glycoprotein for fusion.
PLoS One. 2019 Jul 5;14(7):e0219312. doi: 10.1371/journal.pone.0219312. eCollection 2019.
6
A molecular mechanism for calcium-mediated synaptotagmin-triggered exocytosis.
Nat Struct Mol Biol. 2018 Oct;25(10):911-917. doi: 10.1038/s41594-018-0130-9. Epub 2018 Oct 5.
7
Identification of Combinations of Approved Drugs With Synergistic Activity Against Ebola Virus in Cell Cultures.
J Infect Dis. 2018 Nov 22;218(suppl_5):S672-S678. doi: 10.1093/infdis/jiy304.
8
Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.
mBio. 2018 May 1;9(3):e00660-18. doi: 10.1128/mBio.00660-18.
9
Cholesterol enhances influenza binding avidity by controlling nanoscale receptor clustering.
Chem Sci. 2018 Feb 28;9(8):2340-2347. doi: 10.1039/c7sc03236f. Epub 2018 Jan 24.
10
Herpes Simplex Virus 1 Envelope Cholesterol Facilitates Membrane Fusion.
Front Microbiol. 2017 Dec 6;8:2383. doi: 10.3389/fmicb.2017.02383. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验