Intelligent Polymer Research Institute (IPRI), ARC Centre of Excellence for Electromaterials Science (ACES), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Innovation Campus, Wollongong, NSW 2522, Australia.
Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia.
ACS Biomater Sci Eng. 2020 Jun 8;6(6):3638-3648. doi: 10.1021/acsbiomaterials.0c00260. Epub 2020 May 26.
In this study we use a combination of ionic- and photo-cross-linking to develop a fabrication method for producing biocompatible microstructures using a methacrylated gellan gum (a polyanion) and chitosan (a polycation) in addition to lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as the photoinitiator. This work involves the development of a low-cost, portable 3D bioprinter and a customized extrusion mechanism for controlled introduction of the materials through a 3D printed microfluidic nozzle, before being cross-linked in situ to form robust microstructure bundles. The formed microstructures yielded a diameter of less than 1 μm and a tensile strength range of ∼1 MPa. This study is the first to explore and achieve GGMA:CHT microstructure fabrication by means of controlled in-line compaction and photo-cross-linking through 3D printed microfluidic channels.
在这项研究中,我们结合离子交联和光交联,开发出一种制造方法,使用甲基丙烯酰化的凝胶多糖(一种聚阴离子)和壳聚糖(一种聚阳离子)以及二苯甲酮-2,4,6-三甲基苯膦酸锂(LAP)作为光引发剂,来制造生物相容性的微结构。这项工作涉及开发一种低成本、便携式的 3D 生物打印机和定制的挤出机构,用于通过 3D 打印微流道喷嘴受控地引入材料,然后就地交联形成坚固的微结构束。形成的微结构的直径小于 1μm,拉伸强度范围约为 1MPa。本研究首次通过 3D 打印微流道探索并实现 GGMA:CHT 微结构的制造,采用在线压实和光交联的方法。