Division of Pediatric Infectious Diseases, Oregon Health and Sciences University, Portland, Oregon, USA.
Department of Medical Informatics and Medical Epidemiology, Oregon Health and Sciences University, Portland, Oregon, USA.
J Am Med Inform Assoc. 2021 Mar 18;28(4):862-867. doi: 10.1093/jamia/ocaa328.
Central line-associated bloodstream infections (CLABSIs) are a common, costly, and hazardous healthcare-associated infection in children. In children in whom continued access is critical, salvage of infected central venous catheters (CVCs) with antimicrobial lock therapy is an alternative to removal and replacement of the CVC. However, the success of CVC salvage is uncertain, and when it fails the catheter has to be removed and replaced. We describe a machine learning approach to predict individual outcomes in CVC salvage that can aid the clinician in the decision to attempt salvage.
Over a 14-year period, 969 pediatric CLABSIs were identified in electronic health records. We used 164 potential predictors to derive 4 types of machine learning models to predict 2 failed salvage outcomes, infection recurrence and CVC removal, at 10 time points between 7 days and 1 year from infection onset.
The area under the receiver-operating characteristic curve varied from 0.56 to 0.83, and key predictors varied over time. The infection recurrence model performed better than the CVC removal model did.
Machine learning-based outcome prediction can inform clinical decision making for children. We developed and evaluated several models to predict clinically relevant outcomes in the context of CVC salvage in pediatric CLABSI and illustrate the variability of predictors over time.
中心静脉相关血流感染(CLABSIs)是儿童中一种常见、昂贵且危险的与医疗保健相关的感染。在继续使用中心静脉导管(CVC)至关重要的儿童中,使用抗菌封管治疗来挽救感染的 CVC 是替代移除和更换 CVC 的一种方法。然而,CVC 挽救的成功率并不确定,当挽救失败时,导管必须被移除和更换。我们描述了一种机器学习方法来预测 CVC 挽救的个体结果,以帮助临床医生决定是否尝试挽救。
在 14 年的时间里,电子病历中确定了 969 例儿科 CLABSIs。我们使用了 164 个潜在的预测因子来推导出 4 种机器学习模型,以预测从感染开始后 7 天到 1 年之间的 10 个时间点的 2 个失败的挽救结果,即感染复发和 CVC 移除。
受试者工作特征曲线下的面积从 0.56 到 0.83 不等,关键预测因子随时间而变化。感染复发模型的表现优于 CVC 移除模型。
基于机器学习的结果预测可以为儿科 CLABSI 中 CVC 挽救的临床决策提供信息。我们开发并评估了几种模型,以预测儿科 CLABSIs 中 CVC 挽救情况下的临床相关结果,并说明了预测因子随时间的变化。